Department of Psychology.
Psychol Methods. 2020 Oct;25(5):577-595. doi: 10.1037/met0000268.
Many approaches in the item response theory (IRT) literature have incorporated response styles to control for potential biases. However, the specific assumptions about response styles are often not made explicit. Having integrated different IRT modeling variants into a superordinate framework, we highlighted assumptions and restrictions of the models (Henninger & Meiser, 2020). In this article, we show that based on the superordinate framework, we can estimate the different models as multidimensional extensions of the nominal response models in standard software environments. Furthermore, we illustrate the differences in estimated parameters, restrictions, and model fit of the IRT variants in a German Big Five standardization sample and show that psychometric models can be used to debias trait estimates. Based on this analysis, we suggest 2 novel modeling extensions that combine fixed and estimated scoring weights for response style dimensions, or explain discrimination parameters through item attributes. In summary, we highlight possibilities to estimate, apply, and extend psychometric modeling approaches for response styles in order to test hypotheses on response styles through model comparisons. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
许多项目反应理论(IRT)文献中的方法都结合了反应风格来控制潜在的偏差。然而,关于反应风格的具体假设通常没有明确说明。我们将不同的 IRT 建模变体集成到一个上位框架中,强调了模型的假设和限制(Henninger & Meiser, 2020)。在本文中,我们表明,基于上位框架,我们可以在标准软件环境中,将不同的模型估计为名义反应模型的多维扩展。此外,我们在德国大五标准化样本中展示了 IRT 变体在估计参数、限制和模型拟合方面的差异,并表明心理测量模型可用于纠正特质估计中的偏差。基于此分析,我们建议 2 种新的建模扩展,将固定和估计的反应风格维度评分权重结合起来,或者通过项目属性来解释区分参数。总之,我们强调了估计、应用和扩展反应风格心理测量建模方法的可能性,以便通过模型比较来检验反应风格假设。(PsycInfo 数据库记录(c)2020 APA,保留所有权利)。