Suppr超能文献

剖析评定量表项目认知反应机制中的个体差异:一种灵活混合的多维IRT树方法。

Disentangling individual differences in cognitive response mechanisms for rating scale items: A flexible-mixture multidimensional IRTree approach.

作者信息

Alagöz Ömer Emre Can, Meiser Thorsten, Khorramdel Lale

机构信息

Department of Psychology, University of Mannheim, L 13 15, 68161, Mannheim, Germany.

National Board of Medical Examiners (NBME), Philadelphia, USA.

出版信息

Behav Res Methods. 2025 Aug 13;57(9):256. doi: 10.3758/s13428-025-02778-0.

Abstract

The accuracy of our inferences from rating-scale items can be improved with IRTree models, which consider heuristic response strategies like response styles (RS). IRTree models break down ordinal responses into pseudo-items (nodes), each representing a distinct decision-making process. These nodes are then modeled using an item response model. In the case of four-point items, a response is split into two nodes: 1) response direction, where the trait influences the overall agreement with items, and 2) response extremity, where both the trait and extreme RS (ERS) impact the choice of relative (dis)agreement categories. However, traditional models, despite addressing RS effects, assume that all respondents follow an identical response strategy, where the selection of relative (dis)agreement categories is influenced by the trait and ERS to the same degree for all respondents. Given that respondents may vary in the extent to which they adopt heuristic-driven strategies (e.g., fatigue, motivation, expertise), this assumption of homogeneous response processes is unlikely to be satisfied, potentially leading to inaccurate inferences. To accommodate different response strategies, we introduce the mixture IRTree model (MixTree). In MixTree, participants are assigned to different latent classes, each associated with distinct response processes. Based on their class memberships, varying weights are assigned to individuals' trait and ERS scores. Additionally, MixTree simultaneously examines extraneous variables to explore sources of heterogeneity. A simulation study validates the MixTree's performance in recovering classes and model parameters. Empirical data analysis identifies two latent classes, one linked to a trait-driven and the other to RS-driven mechanisms.

摘要

使用IRTree模型可以提高我们从评级量表项目中得出的推论的准确性,该模型考虑了诸如反应风格(RS)等启发式反应策略。IRTree模型将有序反应分解为伪项目(节点),每个节点代表一个不同的决策过程。然后使用项目反应模型对这些节点进行建模。对于四点项目,一个反应被拆分为两个节点:1)反应方向,其中特质影响对项目的总体认同;2)反应极端性,其中特质和极端反应风格(ERS)都会影响相对(不)认同类别的选择。然而,传统模型尽管考虑了反应风格的影响,但假设所有受访者都遵循相同的反应策略,即对于所有受访者而言,相对(不)认同类别的选择受特质和ERS的影响程度相同。鉴于受访者在采用启发式驱动策略的程度上可能存在差异(例如疲劳、动机、专业知识),这种对同质反应过程的假设不太可能得到满足,可能导致不准确的推论。为了适应不同的反应策略,我们引入了混合IRTree模型(MixTree)。在MixTree中,参与者被分配到不同潜在类别,每个类别都与不同的反应过程相关联。根据他们所属的类别,为个体的特质和ERS分数分配不同的权重。此外,MixTree同时检查外部变量以探索异质性来源。一项模拟研究验证了MixTree在恢复类别和模型参数方面的性能。实证数据分析确定了两个潜在类别,一个与特质驱动机制相关,另一个与反应风格驱动机制相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8595/12343705/5dc8d7a7188e/13428_2025_2778_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验