Suppr超能文献

用于在各种误差分布假设下生成用于区分多个非线性模型的最优设计的混合算法。

Hybrid algorithms for generating optimal designs for discriminating multiple nonlinear models under various error distributional assumptions.

机构信息

Department of Statistics, National Cheng Kung University, Tainan, Taiwan.

Institute of Data Science, National Cheng Kung University, Tainan, Taiwan.

出版信息

PLoS One. 2020 Oct 5;15(10):e0239864. doi: 10.1371/journal.pone.0239864. eCollection 2020.

Abstract

Finding a model-based optimal design that can optimally discriminate among a class of plausible models is a difficult task because the design criterion is non-differentiable and requires 2 or more layers of nested optimization. We propose hybrid algorithms based on particle swarm optimization (PSO) to solve such optimization problems, including cases when the optimal design is singular, the mean response of some models are not fully specified and problems that involve 4 layers of nested optimization. Using several classical examples, we show that the proposed PSO-based algorithms are not models or criteria specific, and with a few repeated runs, can produce either an optimal design or a highly efficient design. They are also generally faster than the current algorithms, which are generally slow and work for only specific models or discriminating criteria. As an application, we apply our techniques to find optimal discriminating designs for a dose-response study in toxicology with 5 possible models and compare their performances with traditional and a recently proposed algorithm. In the supplementary material, we provide a R package to generate different types of discriminating designs and evaluate efficiencies of competing designs so that the user can implement an informed design.

摘要

找到一种基于模型的最优设计,使其能够在一类合理的模型中进行最佳区分,是一项艰巨的任务,因为设计标准不可微,需要进行 2 层或更多层的嵌套优化。我们提出了基于粒子群优化(PSO)的混合算法来解决这些优化问题,包括最优设计是奇异的、某些模型的平均响应未完全指定以及涉及 4 层嵌套优化的情况。使用几个经典示例,我们表明,所提出的基于 PSO 的算法不是针对特定模型或标准的,并且经过几次重复运行,可以生成最优设计或高效设计。它们也通常比当前的算法更快,而当前的算法通常较慢,并且仅适用于特定的模型或区分标准。作为一个应用,我们将我们的技术应用于毒理学中的剂量反应研究,寻找 5 种可能模型的最优区分设计,并将其性能与传统算法和最近提出的算法进行比较。在补充材料中,我们提供了一个 R 包,可以生成不同类型的区分设计,并评估竞争设计的效率,以便用户可以实施明智的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef54/7535070/b1f5921788f1/pone.0239864.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验