Suppr超能文献

基于脑电图的抑郁症检测:使用具有人口统计学注意力机制的卷积神经网络

EEG-based Depression Detection Using Convolutional Neural Network with Demographic Attention Mechanism.

作者信息

Zhang Xiaowei, Li Junlei, Hou Kechen, Hu Bin, Shen Jian, Pan Jing, Hu Bin

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:128-133. doi: 10.1109/EMBC44109.2020.9175956.

Abstract

Electroencephalography (EEG)-based depression detection has become a hot topic in the development of biomedical engineering. However, the complexity and nonstationarity of EEG signals are two biggest obstacles to this application. In addition, the generalization of detection algorithms may be degraded owing to the influences brought by individual differences. In view of the correlation between EEG signals and individual demographics, such as gender, age, etc., and influences of these demographic factors on the incidence of depression, it would be better to incorporate demographic factors during EEG modeling and depression detection. In this work, we constructed an one-dimensional Convolutional Neural Network (1-D CNN) to obtain more effective features of EEG signals, then integrated gender and age factors into the 1-D CNN via an attention mechanism, which could prompt our 1-D CNN to explore complex correlations between EEG signals and demographic factors, and generate more effective high-level representations ultimately for the detection of depression. Experimental results on 170 (81 depressed patients and 89 normal controls) subjects showed that the proposed method is superior to the unitary 1-D CNN without gender and age factors and two other ways of incorporating demographics. This work also indicates that organic mixture of EEG signals and demographic factors is promising for the detection of depression.Clinical relevance-This work indicates that organically mixture of EEG signals and demographic factors is promising for the detection of depression.

摘要

基于脑电图(EEG)的抑郁症检测已成为生物医学工程发展中的一个热门话题。然而,EEG信号的复杂性和非平稳性是该应用的两大障碍。此外,由于个体差异带来的影响,检测算法的泛化能力可能会下降。鉴于EEG信号与个体人口统计学特征(如性别、年龄等)之间的相关性,以及这些人口统计学因素对抑郁症发病率的影响,在EEG建模和抑郁症检测过程中纳入人口统计学因素会更好。在这项工作中,我们构建了一个一维卷积神经网络(1-D CNN)以获取EEG信号更有效的特征,然后通过注意力机制将性别和年龄因素整合到1-D CNN中,这可以促使我们的1-D CNN探索EEG信号与人口统计学因素之间的复杂相关性,并最终生成更有效的高级表征用于抑郁症检测。对170名受试者(81名抑郁症患者和89名正常对照)的实验结果表明,所提出的方法优于没有性别和年龄因素的单一1-D CNN以及其他两种纳入人口统计学因素的方法。这项工作还表明,EEG信号与人口统计学因素的有机结合对于抑郁症检测具有前景。临床相关性——这项工作表明,EEG信号与人口统计学因素的有机结合对于抑郁症检测具有前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验