Ziegl Andreas, Hayn Dieter, Kastner Peter, Loffler Kerstin, Weidinger Lisa, Brix Bianca, Goswami Nandu, Schreier Gunter
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:808-811. doi: 10.1109/EMBC44109.2020.9176574.
Frailty and falls are the main causes of morbidity and disability in elderly people. The Timed Up-and-Go (TUG) test has been proposed as an appropriate method for evaluating elderly individuals' risk of falling. To analyze the TUG's potential for falls prediction, we conducted a clinical study with participants aged ≥ 65 years, living in nursing homes. We harvested 138 TUG recordings with the information, if patients used a walking aid or not and developed a method to predict the use of walking aids using a Random Forest Classifier for ultrasonic based TUG test recordings. We achieved a high accuracy with an Area Under the Curve (AUC) of 96,9% using a 20% leave out evaluation strategy. Automated collection of structured data from TUG recordings - like the use of a walking aid - may help to improve fall risk tools in future.
衰弱和跌倒为老年人发病和残疾的主要原因。定时起立行走(TUG)测试已被提议作为评估老年人跌倒风险的一种合适方法。为分析TUG在跌倒预测方面的潜力,我们对年龄≥65岁、居住在养老院的参与者进行了一项临床研究。我们收集了138份TUG记录,并记录了患者是否使用助行器的信息,还开发了一种方法,使用基于超声波的TUG测试记录的随机森林分类器来预测助行器的使用情况。使用20%留出法评估策略,我们获得了较高的准确率,曲线下面积(AUC)为96.9%。从TUG记录中自动收集结构化数据,比如是否使用助行器,可能有助于未来改进跌倒风险评估工具。