Suppr超能文献

通过基于物理的神经网络的扫描特定微调实现高保真加速磁共振成像重建

High-Fidelity Accelerated MRI Reconstruction by Scan-Specific Fine-Tuning of Physics-Based Neural Networks.

作者信息

Hossein Hosseini Seyed Amir, Yaman Burhaneddin, Moeller Steen, Akcakaya Mehmet

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1481-1484. doi: 10.1109/EMBC44109.2020.9176241.

Abstract

Long scan duration remains a challenge for high-resolution MRI. Deep learning has emerged as a powerful means for accelerated MRI reconstruction by providing data-driven regularizers that are directly learned from data. These data-driven priors typically remain unchanged for future data in the testing phase once they are learned during training. In this study, we propose to use a transfer learning approach to fine-tune these regularizers for new subjects using a self-supervision approach. While the proposed approach can compromise the extremely fast reconstruction time of deep learning MRI methods, our results on knee MRI indicate that such adaptation can substantially reduce the remaining artifacts in reconstructed images. In addition, the proposed approach has the potential to reduce the risks of generalization to rare pathological conditions, which may be unavailable in the training data.

摘要

长扫描时间对高分辨率磁共振成像(MRI)来说仍是一项挑战。深度学习已成为加速MRI重建的强大手段,它通过提供从数据中直接学习的数据驱动正则化方法来实现。这些数据驱动的先验信息在训练阶段学习完成后,在测试阶段通常对未来的数据保持不变。在本研究中,我们建议使用迁移学习方法,通过自监督方法针对新的受试者微调这些正则化方法。虽然所提出的方法可能会影响深度学习MRI方法极快的重建时间,但我们在膝关节MRI上的结果表明,这种适应性调整可以显著减少重建图像中残留的伪影。此外,所提出的方法有可能降低对罕见病理状况泛化的风险,而这些状况在训练数据中可能不存在。

相似文献

10
k-Space deep learning for reference-free EPI ghost correction.k 空间深度学习用于无参考 EPI 鬼影校正。
Magn Reson Med. 2019 Dec;82(6):2299-2313. doi: 10.1002/mrm.27896. Epub 2019 Jul 18.

本文引用的文献

9
ACCELERATED CORONARY MRI USING 3D SPIRIT-RAKI WITH SPARSITY REGULARIZATION.使用具有稀疏正则化的3D SPIRIT-RAKI加速冠状动脉磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1692-1695. doi: 10.1109/ISBI.2019.8759459. Epub 2019 Jul 11.
10
Accelerated Simultaneous Multi-Slice MRI using Subject-Specific Convolutional Neural Networks.使用特定主题卷积神经网络的加速同步多切片磁共振成像
Conf Rec Asilomar Conf Signals Syst Comput. 2018 Oct;2018:1636-1640. doi: 10.1109/ACSSC.2018.8645313. Epub 2019 Feb 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验