Hossein Hosseini Seyed Amir, Yaman Burhaneddin, Moeller Steen, Akcakaya Mehmet
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1481-1484. doi: 10.1109/EMBC44109.2020.9176241.
Long scan duration remains a challenge for high-resolution MRI. Deep learning has emerged as a powerful means for accelerated MRI reconstruction by providing data-driven regularizers that are directly learned from data. These data-driven priors typically remain unchanged for future data in the testing phase once they are learned during training. In this study, we propose to use a transfer learning approach to fine-tune these regularizers for new subjects using a self-supervision approach. While the proposed approach can compromise the extremely fast reconstruction time of deep learning MRI methods, our results on knee MRI indicate that such adaptation can substantially reduce the remaining artifacts in reconstructed images. In addition, the proposed approach has the potential to reduce the risks of generalization to rare pathological conditions, which may be unavailable in the training data.
长扫描时间对高分辨率磁共振成像(MRI)来说仍是一项挑战。深度学习已成为加速MRI重建的强大手段,它通过提供从数据中直接学习的数据驱动正则化方法来实现。这些数据驱动的先验信息在训练阶段学习完成后,在测试阶段通常对未来的数据保持不变。在本研究中,我们建议使用迁移学习方法,通过自监督方法针对新的受试者微调这些正则化方法。虽然所提出的方法可能会影响深度学习MRI方法极快的重建时间,但我们在膝关节MRI上的结果表明,这种适应性调整可以显著减少重建图像中残留的伪影。此外,所提出的方法有可能降低对罕见病理状况泛化的风险,而这些状况在训练数据中可能不存在。