Lopes-Dias Catarina, Sburlea Andreea I, Muller-Putz Gernot R
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2995-2998. doi: 10.1109/EMBC44109.2020.9176640.
Brain-computer interfaces (BCIs) provide more independence to people with severe motor disabilities but current BCIs' performance is still not optimal and often the user's intentions are misinterpreted. Error-related potentials (ErrPs) are the neurophysiological signature of error processing and their detection can help improving a BCI's performance.A major inconvenience of BCIs is that they commonly require a long calibration period, before the user can receive feedback of their own brain signals. Here, we use the data of 15 participants and compare the performance of a personalized ErrP classifier with a generic ErrP classifier. We concluded that there was no significant difference in classification performance between the generic and the personalized classifiers (Wilcoxon signed rank tests, two-sided and one-sided left and right). This results indicate that the use of a generic ErrP classifier is a good strategy to remove the calibration period of a ErrP classifier, allowing participants to receive immediate feedback of the ErrP detections.
脑机接口(BCIs)为严重运动障碍患者提供了更多的独立性,但目前脑机接口的性能仍不理想,用户意图常常被误判。错误相关电位(ErrPs)是错误处理的神经生理特征,对其进行检测有助于提高脑机接口的性能。脑机接口的一个主要不便之处在于,通常需要很长的校准期,用户才能收到自己脑信号的反馈。在此,我们使用了15名参与者的数据,比较了个性化错误相关电位分类器和通用错误相关电位分类器的性能。我们得出结论,通用分类器和个性化分类器在分类性能上没有显著差异(威尔科克森符号秩检验,双侧以及单侧左右检验)。这些结果表明,使用通用错误相关电位分类器是消除错误相关电位分类器校准期的一个好策略,能让参与者立即收到错误相关电位检测的反馈。