Suppr超能文献

通用错误相关电位分类器的性能与个性化分类器相当。

A Generic Error-related Potential Classifier Offers a Comparable Performance to a Personalized Classifier.

作者信息

Lopes-Dias Catarina, Sburlea Andreea I, Muller-Putz Gernot R

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2995-2998. doi: 10.1109/EMBC44109.2020.9176640.

Abstract

Brain-computer interfaces (BCIs) provide more independence to people with severe motor disabilities but current BCIs' performance is still not optimal and often the user's intentions are misinterpreted. Error-related potentials (ErrPs) are the neurophysiological signature of error processing and their detection can help improving a BCI's performance.A major inconvenience of BCIs is that they commonly require a long calibration period, before the user can receive feedback of their own brain signals. Here, we use the data of 15 participants and compare the performance of a personalized ErrP classifier with a generic ErrP classifier. We concluded that there was no significant difference in classification performance between the generic and the personalized classifiers (Wilcoxon signed rank tests, two-sided and one-sided left and right). This results indicate that the use of a generic ErrP classifier is a good strategy to remove the calibration period of a ErrP classifier, allowing participants to receive immediate feedback of the ErrP detections.

摘要

脑机接口(BCIs)为严重运动障碍患者提供了更多的独立性,但目前脑机接口的性能仍不理想,用户意图常常被误判。错误相关电位(ErrPs)是错误处理的神经生理特征,对其进行检测有助于提高脑机接口的性能。脑机接口的一个主要不便之处在于,通常需要很长的校准期,用户才能收到自己脑信号的反馈。在此,我们使用了15名参与者的数据,比较了个性化错误相关电位分类器和通用错误相关电位分类器的性能。我们得出结论,通用分类器和个性化分类器在分类性能上没有显著差异(威尔科克森符号秩检验,双侧以及单侧左右检验)。这些结果表明,使用通用错误相关电位分类器是消除错误相关电位分类器校准期的一个好策略,能让参与者立即收到错误相关电位检测的反馈。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验