Suppr超能文献

基于运动想象的脑机接口方法在帕金森病患者神经康复中的评估。

Evaluation of Motor Imagery-Based BCI methods in neurorehabilitation of Parkinson's Disease patients.

作者信息

Miladinovic A, Ajcevic M, Busan P, Jarmolowska J, Silveri G, Deodato M, Mezzarobba S, Battaglini P P, Accardo A

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3058-3061. doi: 10.1109/EMBC44109.2020.9176651.

Abstract

The study reports the performance of Parkinson's disease (PD) patients to operate Motor-Imagery based Brain-Computer Interface (MI-BCI) and compares three selected pre-processing and classification approaches. The experiment was conducted on 7 PD patients who performed a total of 14 MI-BCI sessions targeting lower extremities. EEG was recorded during the initial calibration phase of each session, and the specific BCI models were produced by using Spectrally weighted Common Spatial Patterns (SpecCSP), Source Power Comodulation (SPoC) and Filter-Bank Common Spatial Patterns (FBCSP) methods. The results showed that FBCSP outperformed SPoC in terms of accuracy, and both SPoC and SpecCSP in terms of the false-positive ratio. The study also demonstrates that PD patients were capable of operating MI-BCI, although with lower accuracy.

摘要

该研究报告了帕金森病(PD)患者操作基于运动想象的脑机接口(MI-BCI)的表现,并比较了三种选定的预处理和分类方法。该实验对7名PD患者进行,他们总共进行了14次针对下肢的MI-BCI实验。在每个实验的初始校准阶段记录脑电图,并使用频谱加权公共空间模式(SpecCSP)、源功率共调制(SPoC)和滤波器组公共空间模式(FBCSP)方法生成特定的BCI模型。结果表明,FBCSP在准确性方面优于SPoC,而SPoC和SpecCSP在假阳性率方面表现相当。该研究还表明,PD患者能够操作MI-BCI,尽管准确性较低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验