Suppr超能文献

使用集成机器学习方法对不均衡数据集进行癫痫发作检测

Epileptic Seizure Detection for Imbalanced Datasets Using an Integrated Machine Learning Approach.

作者信息

Masum Mohammad, Shahriar Hossain, Haddad Hisham M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5416-5419. doi: 10.1109/EMBC44109.2020.9175632.

Abstract

Epileptic Seizure (Epilepsy) is a neurological disorder that occurs due to abnormal brain activities. Epilepsy affects patients' health and lead to life-threatening situations. Early prediction of epilepsy is highly effective to avoid seizures. Machine Learning algorithms have been used to classify epilepsy from Electroencephalograms (EEG) data. These algorithms exhibited reduced performance when classes are imbalanced. This work presents an integrated machine learning approach for epilepsy detection, which can effectively learn from imbalanced data. This approach utilizes Principal Component Analysis (PCA) at the first stage to extract both high- and low- variant Principal Components (PCs), which are empirically customized for imbalanced data classification. Conventionally, PCA is used for dimension reduction of a dataset leveraging PCs with high variances. In this paper, we propose a model to show that PCs associated with low variances can capture the implicit pattern of minor class of a dataset. The selected PCs are then fed into different machine learning classifiers to predict seizures. We performed experiments on the Epileptic Seizure Recognition dataset to evaluate our model. The experimental results show the robustness and effectiveness of the proposed model.

摘要

癫痫发作(癫痫)是一种由于大脑活动异常而发生的神经系统疾病。癫痫会影响患者的健康并导致危及生命的情况。癫痫的早期预测对于避免发作非常有效。机器学习算法已被用于从脑电图(EEG)数据中对癫痫进行分类。当类别不平衡时,这些算法的性能会下降。这项工作提出了一种用于癫痫检测的集成机器学习方法,该方法可以有效地从不平衡数据中学习。该方法在第一阶段利用主成分分析(PCA)来提取高方差和低方差的主成分(PC),这些主成分是根据经验为不平衡数据分类定制的。传统上,PCA用于利用具有高方差的PC对数据集进行降维。在本文中,我们提出了一个模型来表明与低方差相关的PC可以捕获数据集的少数类别的隐含模式。然后将选定的PC输入到不同的机器学习分类器中以预测发作。我们在癫痫发作识别数据集上进行了实验以评估我们的模型。实验结果表明了所提出模型的鲁棒性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验