Suppr超能文献

基于扩张卷积神经网络的新生儿气管插管自动评估系统

Automated Assessment System for Neonatal Endotracheal Intubation Using Dilated Convolutional Neural Network.

作者信息

Zhao Shang, Xiao Xiao, Zhang Xiaoke, Yan Meng Wei Li, Soghier Lamia, Hahn James K

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5455-5458. doi: 10.1109/EMBC44109.2020.9176329.

Abstract

Neonatal endotracheal intubation (ETI) is an important, complex resuscitation skill, which requires a significant amount of practice to master. Current ETI practice is conducted on the physical manikin and relies on the expert instructors' assessment. Since the training opportunities are limited by the availability of expert instructors, an automatic assessment model is highly desirable. However, automating ETI assessment is challenging due to the complexity of identifying crucial features, providing accurate evaluations and offering valuable feedback to trainees. In this paper, we propose a dilated Convolutional Neural Network (CNN) based ETI assessment model, which can automatically provide an overall score and performance feedback to pediatric trainees. The proposed assessment model takes the captured kinematic multivariate time-series (MTS) data from the manikin-based augmented ETI system that we developed, automatically extracts the crucial features of captured data, and eventually provides an overall score as output. Furthermore, the visualization based on the class activation mapping (CAM) can automatically identify the motions that have significant impact on the overall score, thus providing useful feedback to trainees. Our model can achieve 92.2% average classification accuracy using the Leave-One-Out-Cross-Validation (LOOCV).

摘要

新生儿气管插管(ETI)是一项重要且复杂的复苏技能,需要大量练习才能掌握。目前的ETI练习是在实体模型上进行的,并且依赖于专家教员的评估。由于培训机会受到专家教员可用性的限制,因此非常需要一种自动评估模型。然而,由于识别关键特征、提供准确评估以及向学员提供有价值反馈的复杂性,实现ETI评估自动化具有挑战性。在本文中,我们提出了一种基于扩张卷积神经网络(CNN)的ETI评估模型,该模型可以自动为儿科受训人员提供总体评分和性能反馈。所提出的评估模型从我们开发的基于模型的增强型ETI系统中获取捕获的运动学多变量时间序列(MTS)数据,自动提取捕获数据的关键特征,并最终提供总体评分作为输出。此外,基于类激活映射(CAM)的可视化可以自动识别对总体评分有重大影响的动作,从而为学员提供有用的反馈。使用留一法交叉验证(LOOCV),我们的模型平均分类准确率可以达到92.2%。

相似文献

5
Automated Assessment System with Cross Reality for Neonatal Endotracheal Intubation Training.用于新生儿气管插管训练的跨现实自动评估系统
2020 IEEE Conf Virtual Real 3D User Interfaces Workshops (2020). 2020 Mar;2020:738-739. doi: 10.1109/vrw50115.2020.00220. Epub 2020 May 11.

引用本文的文献

本文引用的文献

1
Automated Assessment System with Cross Reality for Neonatal Endotracheal Intubation Training.用于新生儿气管插管训练的跨现实自动评估系统
2020 IEEE Conf Virtual Real 3D User Interfaces Workshops (2020). 2020 Mar;2020:738-739. doi: 10.1109/vrw50115.2020.00220. Epub 2020 May 11.
2
A Physics-based Virtual Reality Simulation Framework for Neonatal Endotracheal Intubation.一种用于新生儿气管插管的基于物理的虚拟现实模拟框架。
Proc IEEE Conf Virtual Real 3D User Interfaces. 2020 Mar;2020:557-565. doi: 10.1109/vr46266.2020.1581028031480. Epub 2020 May 11.
5
A Novel Artificial Intelligence System for Endotracheal Intubation.一种用于气管插管的新型人工智能系统。
Prehosp Emerg Care. 2016 Sep-Oct;20(5):667-71. doi: 10.3109/10903127.2016.1139220. Epub 2016 Mar 17.
8
Level of trainee and tracheal intubation outcomes.受训者水平与气管插管结果。
Pediatrics. 2013 Mar;131(3):e821-8. doi: 10.1542/peds.2012-2127. Epub 2013 Feb 11.
9
Tracking manikin tracheal intubation using motion analysis.使用运动分析追踪人体模型气管插管
Pediatr Emerg Care. 2011 Aug;27(8):701-5. doi: 10.1097/PEC.0b013e318226c7f4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验