Suppr超能文献

基于被动传感器数据的未来情绪、健康和压力预测:使用深度学习的用户自适应

Passive Sensor Data Based Future Mood, Health, and Stress Prediction: User Adaptation Using Deep Learning.

作者信息

Yu Han, Sano Akane

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5884-5887. doi: 10.1109/EMBC44109.2020.9176242.

Abstract

Predicting one's mood, health, and stress in the future may provide useful feedback before wellbeing related problems become severe. Previously, researchers developed participant-dependent wellbeing prediction models using mobile and wearable sensors, where the models were trained and tested with the same group of people. However, in real-world applications, it is essential to consider the adaptability of the developed models to new users for predicting new users' wellbeing immediately and accurately. In this paper, we built wellbeing prediction models using passively sensed data from wearable sensors, mobile phones, and weather API, and deep learning methods, and evaluated the models with the data from new users. We compared deep long short-term memory (LSTM) network and the combination of convolutional neural network (CNN) and the LSTM model. We found that our deep LSTM model provided performances, in mean absolute error (MAE), as 15.7, 15.6, and 16.8 out of 100 in predicting self-reported mood, health, and stress respectively for new users. Furthermore, we applied a fine-tuning transfer learning method based on our deep LSTM model, which provided new participants with more accurate predictions, especially when the volume of new participants' data was limited. The transfer learning model improved the MAE performances to 13.5, 13.2, and 14.4 out of 100 for mood, health, and stress, respectively.

摘要

预测一个人未来的情绪、健康状况和压力水平,可能会在与幸福感相关的问题变得严重之前提供有用的反馈。此前,研究人员利用移动和可穿戴传感器开发了依赖于参与者的幸福感预测模型,这些模型是使用同一组人群进行训练和测试的。然而,在实际应用中,为了能够立即且准确地预测新用户的幸福感,考虑所开发模型对新用户的适应性至关重要。在本文中,我们利用来自可穿戴传感器、手机和天气应用程序编程接口(API)的被动感知数据以及深度学习方法构建了幸福感预测模型,并用新用户的数据对这些模型进行了评估。我们比较了深度长短期记忆(LSTM)网络以及卷积神经网络(CNN)与LSTM模型的组合。我们发现,对于新用户,我们的深度LSTM模型在预测自我报告的情绪、健康和压力方面,平均绝对误差(MAE)分别为15.7、15.6和16.8(满分100)。此外,我们基于深度LSTM模型应用了一种微调迁移学习方法,该方法为新参与者提供了更准确的预测,尤其是在新参与者的数据量有限时。迁移学习模型将情绪、健康和压力的MAE性能分别提高到了满分100中的13.5、13.2和14.4。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验