Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
Promega Corporation, Madison, Wisconsin.
Mol Cell Proteomics. 2020 Dec;19(12):2139-2157. doi: 10.1074/mcp.TIR120.002129. Epub 2020 Oct 5.
Trypsin is the protease of choice in bottom-up proteomics. However, its application can be limited by the amino acid composition of target proteins and the pH of the digestion solution. In this study we characterize ProAlanase, a protease from the fungus that cleaves primarily on the C-terminal side of proline and alanine residues. ProAlanase achieves high proteolytic activity and specificity when digestion is carried out at acidic pH (1.5) for relatively short (2 h) time periods. To elucidate the potential of ProAlanase in proteomics applications, we conducted a series of investigations comprising comparative multi-enzymatic profiling of a human cell line proteome, histone PTM analysis, ancient bone protein identification, phosphosite mapping and sequencing of a proline-rich protein and disulfide bond mapping in mAb. The results demonstrate that ProAlanase is highly suitable for proteomics analysis of the arginine- and lysine-rich histones, enabling high sequence coverage of multiple histone family members. It also facilitates an efficient digestion of bone collagen thanks to the cleavage at the C terminus of hydroxyproline which is highly prevalent in collagen. This allows to identify complementary proteins in ProAlanase- and trypsin-digested ancient bone samples, as well as to increase sequence coverage of noncollagenous proteins. Moreover, digestion with ProAlanase improves protein sequence coverage and phosphosite localization for the proline-rich protein Notch3 intracellular domain (N3ICD). Furthermore, we achieve a nearly complete coverage of N3ICD protein by sequencing using the combination of ProAlanase and tryptic peptides. Finally, we demonstrate that ProAlanase is efficient in disulfide bond mapping, showing high coverage of disulfide-containing regions in a nonreduced mAb.
胰蛋白酶是向下蛋白质组学中首选的蛋白酶。然而,其应用可能会受到目标蛋白质的氨基酸组成和消化液 pH 值的限制。在这项研究中,我们对真菌来源的蛋白酶 ProAlanase 进行了研究,该蛋白酶主要在脯氨酸和丙氨酸残基的 C 末端切割。ProAlanase 在酸性 pH(1.5)下进行相对较短(2 小时)的消化时,可实现高的蛋白水解活性和特异性。为了阐明 ProAlanase 在蛋白质组学应用中的潜力,我们进行了一系列研究,包括对人类细胞系蛋白质组进行比较多酶谱分析、组蛋白 PTM 分析、古代骨蛋白鉴定、磷酸化位点映射和富含脯氨酸的蛋白质测序以及 mAb 中二硫键映射。结果表明,ProAlanase 非常适合富含精氨酸和赖氨酸的组蛋白的蛋白质组学分析,能够实现多个组蛋白家族成员的高序列覆盖率。由于在富含羟脯氨酸的胶原蛋白的 C 末端切割,ProAlanase 还可以有效地消化骨胶原,从而可以鉴定 ProAlanase 和胰蛋白酶消化的古代骨样本中的互补蛋白质,以及增加非胶原蛋白的序列覆盖率。此外,ProAlanase 消化可提高富含脯氨酸的蛋白质 Notch3 细胞内结构域(N3ICD)的蛋白序列覆盖率和磷酸化位点定位。此外,我们通过使用 ProAlanase 和胰蛋白酶肽的组合对 N3ICD 蛋白进行测序,实现了几乎完整的 N3ICD 蛋白序列覆盖。最后,我们证明 ProAlanase 能够有效地进行二硫键映射,在非还原 mAb 中显示出对含二硫键区域的高覆盖率。