Suppr超能文献

miR-29 协调成年视觉皮层中的年龄依赖性可塑性制动器。

MiR-29 coordinates age-dependent plasticity brakes in the adult visual cortex.

机构信息

BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy.

Institute of Neuroscience, National Research Council, Pisa, Italy.

出版信息

EMBO Rep. 2020 Nov 5;21(11):e50431. doi: 10.15252/embr.202050431. Epub 2020 Oct 7.

Abstract

Visual cortical circuits show profound plasticity during early life and are later stabilized by molecular "brakes" limiting excessive rewiring beyond a critical period. The mechanisms coordinating the expression of these factors during the transition from development to adulthood remain unknown. We found that miR-29a expression in the visual cortex dramatically increases with age, but it is not experience-dependent. Precocious high levels of miR-29a blocked ocular dominance plasticity and caused an early appearance of perineuronal nets. Conversely, inhibition of miR-29a in adult mice using LNA antagomirs activated ocular dominance plasticity, reduced perineuronal nets, and restored their juvenile chemical composition. Activated adult plasticity had the typical functional and proteomic signature of critical period plasticity. Transcriptomic and proteomic studies indicated that miR-29a manipulation regulates the expression of plasticity brakes in specific cortical circuits. These data indicate that miR-29a is a regulator of the plasticity brakes promoting age-dependent stabilization of visual cortical connections.

摘要

视皮层回路在生命早期表现出显著的可塑性,随后通过分子“刹车”稳定下来,限制了关键期后过度的重新布线。协调这些因子在从发育到成年过渡期间表达的机制尚不清楚。我们发现,视皮层中的 miR-29a 表达随年龄显著增加,但不受经验影响。过早高水平的 miR-29a 阻断了眼优势可塑性,并导致周围神经网的早期出现。相反,使用 LNA 反义寡核苷酸抑制成年小鼠中的 miR-29a 可激活眼优势可塑性,减少周围神经网,并恢复其幼年的化学组成。激活的成年可塑性具有关键期可塑性的典型功能和蛋白质组学特征。转录组学和蛋白质组学研究表明,miR-29a 调控特定皮质回路中可塑性刹车的表达。这些数据表明,miR-29a 是促进视皮层连接随年龄依赖稳定的可塑性刹车的调节剂。

相似文献

1
MiR-29 coordinates age-dependent plasticity brakes in the adult visual cortex.
EMBO Rep. 2020 Nov 5;21(11):e50431. doi: 10.15252/embr.202050431. Epub 2020 Oct 7.
2
Experience-dependent DNA methylation regulates plasticity in the developing visual cortex.
Nat Neurosci. 2015 Jul;18(7):956-8. doi: 10.1038/nn.4026. Epub 2015 May 25.
3
Inhibition of Semaphorin3A Promotes Ocular Dominance Plasticity in the Adult Rat Visual Cortex.
Mol Neurobiol. 2019 Sep;56(9):5987-5997. doi: 10.1007/s12035-019-1499-0. Epub 2019 Jan 31.
4
Experience-dependent expression of miR-132 regulates ocular dominance plasticity.
Nat Neurosci. 2011 Sep 4;14(10):1237-9. doi: 10.1038/nn.2920.
5
Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke.
Exp Gerontol. 2014 Dec;60:1-11. doi: 10.1016/j.exger.2014.09.007. Epub 2014 Sep 16.
6
Enhancement of visual cortex plasticity by dark exposure.
Philos Trans R Soc Lond B Biol Sci. 2017 Mar 5;372(1715). doi: 10.1098/rstb.2016.0159.
7
miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity.
Nat Neurosci. 2011 Sep 4;14(10):1240-2. doi: 10.1038/nn.2909.
8
Virally mediated knock-down of NR2 subunits ipsilateral to the deprived eye blocks ocular dominance plasticity.
Exp Brain Res. 2007 Feb;177(1):64-77. doi: 10.1007/s00221-006-0647-8. Epub 2006 Aug 30.
9
Progressive maturation of silent synapses governs the duration of a critical period.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):E3131-40. doi: 10.1073/pnas.1506488112. Epub 2015 May 26.
10
Animals lacking link protein have attenuated perineuronal nets and persistent plasticity.
Brain. 2010 Aug;133(Pt 8):2331-47. doi: 10.1093/brain/awq145. Epub 2010 Jun 20.

引用本文的文献

1
Epigenetic regulation of brain development, plasticity, and response to early-life stress.
Neuropsychopharmacology. 2025 Aug 6. doi: 10.1038/s41386-025-02179-z.
2
Orchestrating the Matrix: The Role of Glial Cells and Systemic Signals in Perineuronal Net Dynamics.
Neurochem Res. 2025 Jul 29;50(4):253. doi: 10.1007/s11064-025-04506-8.
3
Analysis of microRNA expression reveals convergent evolution of the molecular control of diapause in annual killifishes.
Front Genet. 2025 Jul 3;16:1583989. doi: 10.3389/fgene.2025.1583989. eCollection 2025.
5
miR-29 is an important driver of aging-related phenotypes.
Commun Biol. 2024 Aug 27;7(1):1055. doi: 10.1038/s42003-024-06735-z.
7
Perineuronal Net Microscopy: From Brain Pathology to Artificial Intelligence.
Int J Mol Sci. 2024 Apr 11;25(8):4227. doi: 10.3390/ijms25084227.
8
GDNF and miRNA-29a as biomarkers in the first episode of psychosis: uncovering associations with psychosocial factors.
Front Psychiatry. 2024 Apr 2;15:1320650. doi: 10.3389/fpsyt.2024.1320650. eCollection 2024.
9
Restoring vision in adult amblyopia by enhancing plasticity through deletion of the transcriptional repressor REST.
iScience. 2024 Mar 14;27(4):109507. doi: 10.1016/j.isci.2024.109507. eCollection 2024 Apr 19.
10
Epigenome Defines Aberrant Brain Laterality in Major Mental Illnesses.
Brain Sci. 2024 Mar 7;14(3):261. doi: 10.3390/brainsci14030261.

本文引用的文献

1
The reactome pathway knowledgebase.
Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503. doi: 10.1093/nar/gkz1031.
2
AGO CLIP Reveals an Activated Network for Acute Regulation of Brain Glutamate Homeostasis in Ischemic Stroke.
Cell Rep. 2019 Jul 23;28(4):979-991.e6. doi: 10.1016/j.celrep.2019.06.075.
3
The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function.
Nat Rev Neurosci. 2019 Aug;20(8):451-465. doi: 10.1038/s41583-019-0196-3. Epub 2019 Jul 1.
4
Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential.
Trends Neurosci. 2019 Jul;42(7):458-470. doi: 10.1016/j.tins.2019.04.003. Epub 2019 Jun 4.
5
SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse.
Neuron. 2019 Jul 17;103(2):217-234.e4. doi: 10.1016/j.neuron.2019.05.002. Epub 2019 Jun 3.
6
Inhibition of Semaphorin3A Promotes Ocular Dominance Plasticity in the Adult Rat Visual Cortex.
Mol Neurobiol. 2019 Sep;56(9):5987-5997. doi: 10.1007/s12035-019-1499-0. Epub 2019 Jan 31.
8
Therapeutic Oligonucleotides: State of the Art.
Annu Rev Pharmacol Toxicol. 2019 Jan 6;59:605-630. doi: 10.1146/annurev-pharmtox-010818-021050. Epub 2018 Oct 9.
9
Aggrecan Directs Extracellular Matrix-Mediated Neuronal Plasticity.
J Neurosci. 2018 Nov 21;38(47):10102-10113. doi: 10.1523/JNEUROSCI.1122-18.2018. Epub 2018 Oct 3.
10
The Perineuronal 'Safety' Net? Perineuronal Net Abnormalities in Neurological Disorders.
Front Mol Neurosci. 2018 Aug 3;11:270. doi: 10.3389/fnmol.2018.00270. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验