文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Preparation and analysis of photochromic behavior of carboxymethyl chitin derivatives containing spiropyran moieties.

作者信息

Sun Bin-Bin, Yao Bing-Hua, Fu Zheng-Sheng, He Yang-Qing

机构信息

College of Materials Science and Engineering, Xi'an University of Technology, Xi'an, China.

Department of Chemical Engineering, Shaanxi Vocational and Technical College of Defense Industry, Xi'an, China.

出版信息

Des Monomers Polym. 2020 Jul 26;23(1):106-117. doi: 10.1080/15685551.2020.1796362.


DOI:10.1080/15685551.2020.1796362
PMID:33029079
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7473278/
Abstract

1'-(2-Acryloxyethyl)-3,3'-dimethyl-6-nitrospiro[2 -1-benzopyran-2,2'-indoline] (SPA) was synthesized and grafted onto a water-soluble carboxymethyl chitin (CMCH) macromolecule to prepare a photochromic copolymer (CMCH-g-SPA). The structure of CMCH-g-SPA was characterized by Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, X-ray diffraction (XRD) analysis, water-solubility evaluation, and UV-vis spectroscopy. XRD patterns of CMCH-g-SPA revealed that grafting copolymerization disrupts the CMCH semicrystalline structure, thus improving water solubility. UV-vis spectroscopy results supported the negative photochromic behavior of the merocyanine (MC) form of CMCH-g-SPA (CMCH-g-MCA) present in a water solution of the target copolymer. In addition to high solvent polarity, the intermolecular and intramolecular electrostatic attraction between the indolenine cation and the COO anion were found to be influencing factors, which stabilize these MC form of spiropyran groups grafted onto CMCH. In a water solution, visible light bleaching was completed over a short period (8 minutes) under artificial visible light irradiation and the thermal coloration reaction, whose rate constant at 25 °C was 4.64 × 10 s, which fit the first-order reaction equation. After ten photochromic cycles in water solution, the relative absorption intensity of CMCH-g-MCA decreased by 7.92%.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/ddb2d8bbeda9/TDMP_A_1796362_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/ba35468a25f7/TDMP_A_1796362_SCH0001_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/fe4bc9a08842/TDMP_A_1796362_SCH0002_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/871fdc8cffaf/TDMP_A_1796362_SCH0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/68a297fe3e0f/TDMP_A_1796362_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/2bfdb9208be6/TDMP_A_1796362_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/2de6189023ca/TDMP_A_1796362_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/f614db1b2dfe/TDMP_A_1796362_F0004_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/31674e949d1f/TDMP_A_1796362_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/74b5aeb66fd5/TDMP_A_1796362_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/c9e2fbe9716c/TDMP_A_1796362_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/840bc031c590/TDMP_A_1796362_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/ddb2d8bbeda9/TDMP_A_1796362_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/ba35468a25f7/TDMP_A_1796362_SCH0001_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/fe4bc9a08842/TDMP_A_1796362_SCH0002_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/871fdc8cffaf/TDMP_A_1796362_SCH0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/68a297fe3e0f/TDMP_A_1796362_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/2bfdb9208be6/TDMP_A_1796362_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/2de6189023ca/TDMP_A_1796362_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/f614db1b2dfe/TDMP_A_1796362_F0004_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/31674e949d1f/TDMP_A_1796362_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/74b5aeb66fd5/TDMP_A_1796362_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/c9e2fbe9716c/TDMP_A_1796362_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/840bc031c590/TDMP_A_1796362_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/7473278/ddb2d8bbeda9/TDMP_A_1796362_F0009_OC.jpg

相似文献

[1]
Preparation and analysis of photochromic behavior of carboxymethyl chitin derivatives containing spiropyran moieties.

Des Monomers Polym. 2020-7-26

[2]
Photocrosslinked methacrylated carboxymethyl chitin hydrogels with tunable degradation and mechanical behavior.

Carbohydr Polym. 2016-12-19

[3]
[pH-sensitive micelles loaded paclitaxel using carboxymethyl chitosan-palmitic acid mediated by cRGD].

Yao Xue Xue Bao. 2016-4

[4]
High Substitution Synthesis of Carboxymethyl Chitosan for Properties Improvement of Carboxymethyl Chitosan Films Depending on Particle Sizes.

Molecules. 2021-10-3

[5]
Photoswitchable surface wettability of ultrahydrophobic nanofibrous coatings composed of spiropyran-acrylic copolymers.

J Colloid Interface Sci. 2021-7

[6]
Fluorescence control of chitin and chitosan fabricated surface functionalization using direct oxidative polymerization.

RSC Adv. 2018-2-13

[7]
Light and pH dual-responsive spiropyran-based cellulose nanocrystals.

RSC Adv. 2023-4-12

[8]
Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.

Carbohydr Polym. 2012-5-30

[9]
Water-Soluble Spiropyrans with Inverse Photochromism and Their Photoresponsive Electrostatic Self-Assembly.

Chemistry. 2017-3-17

[10]
Photo-isomerization of spiropyran-modified cationic surfactants.

J Colloid Interface Sci. 2007-12-15

引用本文的文献

[1]
Synthesis and Study of the Optical Properties of a Conjugated Polymer with Configurational Isomerism for Optoelectronics.

Materials (Basel). 2023-4-6

本文引用的文献

[1]
Superfine grinding induced amorphization and increased solubility of α-chitin.

Carbohydr Polym. 2020-3-9

[2]
Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials.

Molecules. 2017-12-18

[3]
Implications of molecular diversity of chitin and its derivatives.

Appl Microbiol Biotechnol. 2017-5

[4]
Antioxidant and antimicrobial proprieties of chitin and chitosan extracted from Parapenaeus Longirostris shrimp shell waste.

Ann Pharm Fr. 2016-1

[5]
Preparation of food grade carboxymethyl cellulose from corn husk agrowaste.

Int J Biol Macromol. 2015-5-1

[6]
Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants.

Int J Biol Macromol. 2015-8

[7]
Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films.

Carbohydr Polym. 2014-4-4

[8]
PEG-g-chitosan thermosensitive hydrogel for implant drug delivery: cytotoxicity, in vivo degradation and drug release.

J Biomater Sci Polym Ed. 2013-10-25

[9]
Characterization of the thermal and photoinduced reactions of photochromic spiropyrans in aqueous solution.

J Phys Chem B. 2013-10-21

[10]
Biochemical activities of 6-carboxy β-chitin derived from squid pens.

Carbohydr Polym. 2012-8-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索