Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China.
Sun Yat-sen University, Guangzhou, China.
Biomed Res Int. 2020 Sep 23;2020:9258649. doi: 10.1155/2020/9258649. eCollection 2020.
Methylation of the O-methylguanine methyltransferase (MGMT) gene promoter is correlated with the effectiveness of the current standard of care in glioblastoma patients. In this study, a deep learning pipeline is designed for automatic prediction of MGMT status in 87 glioblastoma patients with contrast-enhanced T1W images and 66 with fluid-attenuated inversion recovery(FLAIR) images. The end-to-end pipeline completes both tumor segmentation and status classification. The better tumor segmentation performance comes from FLAIR images (Dice score, 0.897 ± 0.007) compared to contrast-enhanced T1WI (Dice score, 0.828 ± 0.108), and the better status prediction is also from the FLAIR images (accuracy, 0.827 ± 0.056; recall, 0.852 ± 0.080; precision, 0.821 ± 0.022; and score, 0.836 ± 0.072). This proposed pipeline not only saves the time in tumor annotation and avoids interrater variability in glioma segmentation but also achieves good prediction of MGMT methylation status. It would help find molecular biomarkers from routine medical images and further facilitate treatment planning.
甲基鸟嘌呤-DNA-甲基转移酶(MGMT)基因启动子的甲基化与胶质母细胞瘤患者当前标准治疗的效果相关。在这项研究中,设计了一个深度学习管道,用于自动预测 87 例增强 T1W 图像和 66 例液体衰减反转恢复(FLAIR)图像的胶质母细胞瘤患者的 MGMT 状态。该端到端管道完成肿瘤分割和状态分类。FLAIR 图像的肿瘤分割性能更好(Dice 评分,0.897 ± 0.007),优于增强 T1WI(Dice 评分,0.828 ± 0.108),FLAIR 图像的状态预测也更好(准确性,0.827 ± 0.056;召回率,0.852 ± 0.080;精度,0.821 ± 0.022;和 F1 评分,0.836 ± 0.072)。该提出的管道不仅节省了肿瘤注释的时间,避免了胶质瘤分割中的评分者间变异性,而且还实现了 MGMT 甲基化状态的良好预测。它将有助于从常规医学图像中找到分子生物标志物,并进一步促进治疗计划。