Suppr超能文献

胶质瘤的三平面组装深度学习分割

Three-Plane-assembled Deep Learning Segmentation of Gliomas.

作者信息

Wu Shaocheng, Li Hongyang, Quang Daniel, Guan Yuanfang

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI 48109.

出版信息

Radiol Artif Intell. 2020 Mar 11;2(2):e190011. doi: 10.1148/ryai.2020190011.

Abstract

PURPOSE

To design a computational method for automatic brain glioma segmentation of multimodal MRI scans with high efficiency and accuracy.

MATERIALS AND METHODS

The 2018 Multimodal Brain Tumor Segmentation Challenge (BraTS) dataset was used in this study, consisting of routine clinically acquired preoperative multimodal MRI scans. Three subregions of glioma-the necrotic and nonenhancing tumor core, the peritumoral edema, and the contrast-enhancing tumor-were manually labeled by experienced radiologists. Two-dimensional U-Net models were built using a three-plane-assembled approach to segment three subregions individually (three-region model) or to segment only the whole tumor (WT) region (WT-only model). The term means that coronal and sagittal images were generated by reformatting the original axial images. The model performance for each case was evaluated in three classes: enhancing tumor (ET), tumor core (TC), and WT.

RESULTS

On the internal unseen testing dataset split from the 2018 BraTS training dataset, the proposed models achieved mean Sørensen-Dice scores of 0.80, 0.84, and 0.91, respectively, for ET, TC, and WT. On the BraTS validation dataset, the proposed models achieved mean 95% Hausdorff distances of 3.1 mm, 7.0 mm, and 5.0 mm, respectively, for ET, TC, and WT and mean Sørensen-Dice scores of 0.80, 0.83, and 0.91, respectively, for ET, TC, and WT. On the BraTS testing dataset, the proposed models ranked fourth out of 61 teams. The source code is available at .

CONCLUSION

This deep learning method consistently segmented subregions of brain glioma with high accuracy, efficiency, reliability, and generalization ability on screening images from a large population, and it can be efficiently implemented in clinical practice to assist neuro-oncologists or radiologists. © RSNA, 2020.

摘要

目的

设计一种高效、准确的多模态磁共振成像(MRI)扫描脑胶质瘤自动分割计算方法。

材料与方法

本研究使用了2018年多模态脑肿瘤分割挑战赛(BraTS)数据集,该数据集由临床常规采集的术前多模态MRI扫描组成。胶质瘤的三个子区域——坏死及无强化肿瘤核心、瘤周水肿和强化肿瘤,由经验丰富的放射科医生手动标注。使用三平面组装方法构建二维U-Net模型,以分别分割三个子区域(三区模型)或仅分割整个肿瘤(WT)区域(仅WT模型)。术语 表示通过重新格式化原始轴向图像生成冠状面和矢状面图像。在三个类别中评估每个病例的模型性能:强化肿瘤(ET)、肿瘤核心(TC)和WT。

结果

在从2018年BraTS训练数据集中拆分出的内部未见测试数据集上,所提出的模型在ET、TC和WT上分别实现了0.80、0.84和0.91的平均索伦森-戴斯(Sørensen-Dice)分数。在BraTS验证数据集上,所提出的模型在ET、TC和WT上分别实现了3.1毫米、7.0毫米和5.0毫米的平均95%豪斯多夫(Hausdorff)距离,以及在ET、TC和WT上分别实现了0.80、0.83和0.91的平均索伦森-戴斯分数。在BraTS测试数据集上,所提出的模型在61个团队中排名第四。源代码可在 处获取。

结论

这种深度学习方法在对大量人群的筛查图像上,始终能够高精度、高效率、可靠且具有泛化能力地分割脑胶质瘤子区域,并且可以在临床实践中有效实施,以协助神经肿瘤学家或放射科医生。©RSNA,2020。

相似文献

1
Three-Plane-assembled Deep Learning Segmentation of Gliomas.胶质瘤的三平面组装深度学习分割
Radiol Artif Intell. 2020 Mar 11;2(2):e190011. doi: 10.1148/ryai.2020190011.
6
Clinical capability of modern brain tumor segmentation models.现代脑肿瘤分割模型的临床能力。
Med Phys. 2023 Aug;50(8):4943-4959. doi: 10.1002/mp.16321. Epub 2023 Mar 30.
9
Novel Volumetric Sub-region Segmentation in Brain Tumors.脑肿瘤中的新型体积子区域分割
Front Comput Neurosci. 2020 Jan 24;14:3. doi: 10.3389/fncom.2020.00003. eCollection 2020.

引用本文的文献

3
Multilevel Modeling of Joint Damage in Rheumatoid Arthritis.类风湿关节炎关节损伤的多水平模型
Adv Intell Syst. 2022 Nov;4(11). doi: 10.1002/aisy.202200184. Epub 2022 Oct 13.

本文引用的文献

1
Waking up to data challenges.意识到数据挑战。
Nat Mach Intell. 2019 Jan;1(1). doi: 10.1038/s42256-018-0011-2. Epub 2019 Jan 7.
5
Network Propagation Predicts Drug Synergy in Cancers.网络传播预测癌症中的药物协同作用。
Cancer Res. 2018 Sep 15;78(18):5446-5457. doi: 10.1158/0008-5472.CAN-18-0740. Epub 2018 Jul 27.
8
Cell of origin of glioma: biological and clinical implications.胶质瘤的起源细胞:生物学及临床意义
Br J Cancer. 2016 Dec 6;115(12):1445-1450. doi: 10.1038/bjc.2016.354. Epub 2016 Nov 10.
9
Brain tumor segmentation with Deep Neural Networks.基于深度神经网络的脑肿瘤分割。
Med Image Anal. 2017 Jan;35:18-31. doi: 10.1016/j.media.2016.05.004. Epub 2016 May 19.
10
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验