Wu Shaocheng, Li Hongyang, Quang Daniel, Guan Yuanfang
Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave, Ann Arbor, MI 48109.
Radiol Artif Intell. 2020 Mar 11;2(2):e190011. doi: 10.1148/ryai.2020190011.
To design a computational method for automatic brain glioma segmentation of multimodal MRI scans with high efficiency and accuracy.
The 2018 Multimodal Brain Tumor Segmentation Challenge (BraTS) dataset was used in this study, consisting of routine clinically acquired preoperative multimodal MRI scans. Three subregions of glioma-the necrotic and nonenhancing tumor core, the peritumoral edema, and the contrast-enhancing tumor-were manually labeled by experienced radiologists. Two-dimensional U-Net models were built using a three-plane-assembled approach to segment three subregions individually (three-region model) or to segment only the whole tumor (WT) region (WT-only model). The term means that coronal and sagittal images were generated by reformatting the original axial images. The model performance for each case was evaluated in three classes: enhancing tumor (ET), tumor core (TC), and WT.
On the internal unseen testing dataset split from the 2018 BraTS training dataset, the proposed models achieved mean Sørensen-Dice scores of 0.80, 0.84, and 0.91, respectively, for ET, TC, and WT. On the BraTS validation dataset, the proposed models achieved mean 95% Hausdorff distances of 3.1 mm, 7.0 mm, and 5.0 mm, respectively, for ET, TC, and WT and mean Sørensen-Dice scores of 0.80, 0.83, and 0.91, respectively, for ET, TC, and WT. On the BraTS testing dataset, the proposed models ranked fourth out of 61 teams. The source code is available at .
This deep learning method consistently segmented subregions of brain glioma with high accuracy, efficiency, reliability, and generalization ability on screening images from a large population, and it can be efficiently implemented in clinical practice to assist neuro-oncologists or radiologists. © RSNA, 2020.
设计一种高效、准确的多模态磁共振成像(MRI)扫描脑胶质瘤自动分割计算方法。
本研究使用了2018年多模态脑肿瘤分割挑战赛(BraTS)数据集,该数据集由临床常规采集的术前多模态MRI扫描组成。胶质瘤的三个子区域——坏死及无强化肿瘤核心、瘤周水肿和强化肿瘤,由经验丰富的放射科医生手动标注。使用三平面组装方法构建二维U-Net模型,以分别分割三个子区域(三区模型)或仅分割整个肿瘤(WT)区域(仅WT模型)。术语 表示通过重新格式化原始轴向图像生成冠状面和矢状面图像。在三个类别中评估每个病例的模型性能:强化肿瘤(ET)、肿瘤核心(TC)和WT。
在从2018年BraTS训练数据集中拆分出的内部未见测试数据集上,所提出的模型在ET、TC和WT上分别实现了0.80、0.84和0.91的平均索伦森-戴斯(Sørensen-Dice)分数。在BraTS验证数据集上,所提出的模型在ET、TC和WT上分别实现了3.1毫米、7.0毫米和5.0毫米的平均95%豪斯多夫(Hausdorff)距离,以及在ET、TC和WT上分别实现了0.80、0.83和0.91的平均索伦森-戴斯分数。在BraTS测试数据集上,所提出的模型在61个团队中排名第四。源代码可在 处获取。
这种深度学习方法在对大量人群的筛查图像上,始终能够高精度、高效率、可靠且具有泛化能力地分割脑胶质瘤子区域,并且可以在临床实践中有效实施,以协助神经肿瘤学家或放射科医生。©RSNA,2020。