Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning Province, People's Republic of China.
Cell Death Dis. 2020 Oct 8;11(10):834. doi: 10.1038/s41419-020-03051-2.
Manganese (Mn) overexposure produces long-term cognitive deficits and reduces brain-derived neurotrophic factor (BDNF) in the hippocampus. However, it remains elusive whether Mn-dependent enhanced alpha-synuclein (α-Syn) expression, suggesting a multifaceted mode of neuronal toxicities, accounts for interference with BDNF/TrkB signaling. In this study, we used C57BL/6J WT and α-Syn knockout (KO) mice to establish a model of manganism and found that Mn-induced impairments in spatial memory and synaptic plasticity were related to the α-Syn protein. In addition, consistent with the long-term potentiation (LTP) impairments that were observed, α-Syn KO relieved Mn-induced degradation of PSD95, phosphorylated CaMKIIα, and downregulated SynGAP protein levels. We transfected HT22 cells with lentivirus (LV)-α-Syn shRNA, followed by BDNF and Mn stimulation. In vitro experiments indicated that α-Syn selectively interacted with TrkB receptors and inhibited BDNF/TrkB signaling, leading to phosphorylation and downregulation of GluN2B. The binding of α-Syn to TrkB and Fyn-mediated phosphorylation of GluN2B were negatively regulated by BDNF. Together, these findings indicate that Mn-dependent enhanced α-Syn expression contributes to further exacerbate BDNF protein-level reduction and to inhibit TrkB/Akt/Fyn signaling, thereby disturbing Fyn-mediated phosphorylation of the NMDA receptor GluN2B subunit at tyrosine. In KO α-Syn mice treated with Mn, spatial memory and LTP impairments were less pronounced than in WT mice. However, the same robust neuronal death was observed as a result of Mn-induced neurotoxicity.
锰(Mn)暴露过度会导致长期认知障碍,并减少海马体中的脑源性神经营养因子(BDNF)。然而,Mn 是否依赖于增强α-突触核蛋白(α-Syn)的表达,从而提示神经元毒性的多方面模式,进而干扰 BDNF/TrkB 信号,这一点仍不清楚。在这项研究中,我们使用 C57BL/6J WT 和 α-Syn 敲除(KO)小鼠建立了锰中毒模型,并发现 Mn 诱导的空间记忆和突触可塑性损伤与α-Syn 蛋白有关。此外,与观察到的长时程增强(LTP)损伤一致,α-Syn KO 缓解了 Mn 诱导的 PSD95、磷酸化 CaMKIIα 和 SynGAP 蛋白水平的降解。我们用慢病毒(LV)-α-Syn shRNA 转染 HT22 细胞,然后用 BDNF 和 Mn 刺激。体外实验表明,α-Syn 选择性地与 TrkB 受体相互作用,并抑制 BDNF/TrkB 信号,导致 GluN2B 的磷酸化和下调。BDNF 负调节 α-Syn 与 TrkB 的结合和 Fyn 介导的 GluN2B 磷酸化。综上所述,这些发现表明,Mn 依赖性增强的α-Syn 表达有助于进一步加重 BDNF 蛋白水平的降低,并抑制 TrkB/Akt/Fyn 信号,从而干扰 Fyn 介导的 NMDA 受体 GluN2B 亚基酪氨酸磷酸化。在接受 Mn 治疗的 KO α-Syn 小鼠中,空间记忆和 LTP 损伤的程度不如 WT 小鼠明显。然而,由于 Mn 诱导的神经毒性,仍观察到相同的强烈神经元死亡。