Suppr超能文献

基于机器学习的可渗透性脑白质模型:在体内去髓鞘轴突脱髓鞘的杯状蛋白处理小鼠模型中的实验研究。

Machine learning based white matter models with permeability: An experimental study in cuprizone treated in-vivo mouse model of axonal demyelination.

机构信息

Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK.

Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK.

出版信息

Neuroimage. 2021 Jan 1;224:117425. doi: 10.1016/j.neuroimage.2020.117425. Epub 2020 Oct 6.

Abstract

The intra-axonal water exchange time (τ), a parameter associated with axonal permeability, could be an important biomarker for understanding and treating demyelinating pathologies such as Multiple Sclerosis. Diffusion-Weighted MRI (DW-MRI) is sensitive to changes in permeability; however, the parameter has so far remained elusive due to the lack of general biophysical models that incorporate it. Machine learning based computational models can potentially be used to estimate such parameters. Recently, for the first time, a theoretical framework using a random forest (RF) regressor suggests that this is a promising new approach for permeability estimation. In this study, we adopt such an approach and for the first time experimentally investigate it for demyelinating pathologies through direct comparison with histology. We construct a computational model using Monte Carlo simulations and an RF regressor in order to learn a mapping between features derived from DW-MRI signals and ground truth microstructure parameters. We test our model in simulations, and find strong correlations between the predicted and ground truth parameters (intra-axonal volume fraction f: R =0.99, τ: R =0.84, intrinsic diffusivity d: R =0.99). We then apply the model in-vivo, on a controlled cuprizone (CPZ) mouse model of demyelination, comparing the results from two cohorts of mice, CPZ (N=8) and healthy age-matched wild-type (WT, N=8). We find that the RF model estimates sensible microstructure parameters for both groups, matching values found in literature. Furthermore, we perform histology for both groups using electron microscopy (EM), measuring the thickness of the myelin sheath as a surrogate for exchange time. Histology results show that our RF model estimates are very strongly correlated with the EM measurements (ρ = 0.98 for f, ρ = 0.82 for τ). Finally, we find a statistically significant decrease in τ in all three regions of the corpus callosum (splenium/genu/body) of the CPZ cohort (<τ>=310ms/330ms/350ms) compared to the WT group (<τ>=370ms/370ms/380ms). This is in line with our expectations that τ is lower in regions where the myelin sheath is damaged, as axonal membranes become more permeable. Overall, these results demonstrate, for the first time experimentally and in vivo, that a computational model learned from simulations can reliably estimate microstructure parameters, including the axonal permeability .

摘要

轴内水交换时间(τ)是与轴突通透性相关的参数,它可能是理解和治疗脱髓鞘病变(如多发性硬化症)的重要生物标志物。扩散加权磁共振成像(DW-MRI)对通透性变化敏感;然而,由于缺乏包含该参数的通用生物物理模型,该参数至今仍难以捉摸。基于机器学习的计算模型可以潜在地用于估计这些参数。最近,首次使用随机森林(RF)回归器提出了一种理论框架,表明这是一种用于估计通透性的有前途的新方法。在这项研究中,我们采用了这种方法,并首次通过与组织学的直接比较来实验研究脱髓鞘病变。我们使用蒙特卡罗模拟和 RF 回归器构建了一个计算模型,以便学习从 DW-MRI 信号中提取的特征与真实微观结构参数之间的映射。我们在模拟中测试了我们的模型,并发现预测参数与真实参数之间存在很强的相关性(轴内体积分数 f:R =0.99,τ:R =0.84,固有扩散率 d:R =0.99)。然后,我们将模型应用于体内受控的脱髓鞘杯状醇(CPZ)小鼠模型,比较了两组小鼠(CPZ(N=8)和健康年龄匹配的野生型(WT,N=8))的结果。我们发现,RF 模型可以为两组都估计出合理的微观结构参数,与文献中的值相匹配。此外,我们对两组都进行了电子显微镜(EM)组织学测量,以髓鞘厚度作为交换时间的替代物进行测量。组织学结果表明,我们的 RF 模型估计与 EM 测量非常强相关(f 的 ρ=0.98,τ的 ρ=0.82)。最后,我们发现 CPZ 组的胼胝体的所有三个区域(压部/膝部/体部)的 τ都有统计学意义的下降(<τ>=310ms/330ms/350ms),而 WT 组的 <τ>=370ms/370ms/380ms)。这符合我们的预期,即髓鞘受损的区域 τ 较低,因为轴突膜的通透性增加。总的来说,这些结果首次在实验和体内证明,从模拟中学习的计算模型可以可靠地估计微观结构参数,包括轴突通透性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验