Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK.
Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK.
Neuroimage. 2020 Oct 15;220:117107. doi: 10.1016/j.neuroimage.2020.117107. Epub 2020 Jul 2.
This paper presents Contextual Fibre Growth (ConFiG), an approach to generate white matter numerical phantoms by mimicking natural fibre genesis. ConFiG grows fibres one-by-one, following simple rules motivated by real axonal guidance mechanisms. These simple rules enable ConFiG to generate phantoms with tuneable microstructural features by growing fibres while attempting to meet morphological targets such as user-specified density and orientation distribution. We compare ConFiG to the state-of-the-art approach based on packing fibres together by generating phantoms in a range of fibre configurations including crossing fibre bundles and orientation dispersion. Results demonstrate that ConFiG produces phantoms with up to 20% higher densities than the state-of-the-art, particularly in complex configurations with crossing fibres. We additionally show that the microstructural morphology of ConFiG phantoms is comparable to real tissue, producing diameter and orientation distributions close to electron microscopy estimates from real tissue as well as capturing complex fibre cross sections. Signals simulated from ConFiG phantoms match real diffusion MRI data well, showing that ConFiG phantoms can be used to generate realistic diffusion MRI data. This demonstrates the feasibility of ConFiG to generate realistic synthetic diffusion MRI data for developing and validating microstructure modelling approaches.
本文提出了上下文纤维生长(ConFiG)方法,该方法通过模拟天然纤维发生来生成白质数值体模。ConFiG 逐个生长纤维,遵循由真实轴突导向机制激发的简单规则。这些简单的规则使 ConFiG 能够通过在生长纤维的同时尝试满足形态学目标(如用户指定的密度和方向分布)来生成具有可调节微观结构特征的体模。我们将 ConFiG 与基于将纤维组合在一起的最先进方法进行了比较,通过生成包括交叉纤维束和方向分散在内的多种纤维结构的体模来实现这一目标。结果表明,与最先进方法相比,ConFiG 生成的体模的密度最高可提高 20%,特别是在具有交叉纤维的复杂结构中。我们还表明,ConFiG 体模的微观结构形态与真实组织相当,生成的直径和方向分布与真实组织的电子显微镜估计值接近,并且能够捕获复杂的纤维横截面。从 ConFiG 体模模拟的信号与真实扩散 MRI 数据吻合良好,这表明 ConFiG 体模可用于生成逼真的扩散 MRI 数据。这证明了 ConFiG 生成用于开发和验证微观结构建模方法的逼真合成扩散 MRI 数据的可行性。