Suppr超能文献

使用叶态语义分割的顶视图植物表型学自动工作流程 ARADEEPOPSIS。

ARADEEPOPSIS, an Automated Workflow for Top-View Plant Phenomics using Semantic Segmentation of Leaf States.

机构信息

Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria

Genetics, Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany.

出版信息

Plant Cell. 2020 Dec;32(12):3674-3688. doi: 10.1105/tpc.20.00318. Epub 2020 Oct 9.

Abstract

Linking plant phenotype to genotype is a common goal to both plant breeders and geneticists. However, collecting phenotypic data for large numbers of plants remain a bottleneck. Plant phenotyping is mostly image based and therefore requires rapid and robust extraction of phenotypic measurements from image data. However, because segmentation tools usually rely on color information, they are sensitive to background or plant color deviations. We have developed a versatile, fully open-source pipeline to extract phenotypic measurements from plant images in an unsupervised manner. ARADEEPOPSIS (https://github.com/Gregor-Mendel-Institute/aradeepopsis) uses semantic segmentation of top-view images to classify leaf tissue into three categories: healthy, anthocyanin rich, and senescent. This makes it particularly powerful at quantitative phenotyping of different developmental stages, mutants with aberrant leaf color and/or phenotype, and plants growing in stressful conditions. On a panel of 210 natural Arabidopsis () accessions, we were able to not only accurately segment images of phenotypically diverse genotypes but also to identify known loci related to anthocyanin production and early necrosis in genome-wide association analyses. Our pipeline accurately processed images of diverse origin, quality, and background composition, and of a distantly related Brassicaceae. ARADEEPOPSIS is deployable on most operating systems and high-performance computing environments and can be used independently of bioinformatics expertise and resources.

摘要

将植物表型与基因型联系起来是植物育种家和遗传学家的共同目标。然而,收集大量植物的表型数据仍然是一个瓶颈。植物表型大多基于图像,因此需要从图像数据中快速、稳健地提取表型测量值。然而,由于分割工具通常依赖于颜色信息,因此它们对背景或植物颜色偏差很敏感。我们开发了一种通用的、完全开源的流水线,可以在无监督的情况下从植物图像中提取表型测量值。ARAD-EPOPSIS(https://github.com/Gregor-Mendel-Institute/aradeepopsis)使用顶视图图像的语义分割将叶组织分为三类:健康、富含花青素和衰老。这使得它在定量表型分析不同发育阶段、叶色和/或表型异常的突变体以及在胁迫条件下生长的植物方面特别强大。在 210 个自然拟南芥()访问队列的面板上,我们不仅能够准确地分割表型多样化基因型的图像,还能够在全基因组关联分析中识别与花青素产生和早期坏死相关的已知基因座。我们的流水线可以准确地处理来自不同来源、质量和背景组成的图像,以及来自远缘芸薹属的图像。ARAD-EPOPSIS 可部署在大多数操作系统和高性能计算环境中,并且可以在没有生物信息学专业知识和资源的情况下独立使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2db6/7721323/6d904ee4f7c8/TPC_202000318R2_fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验