Suppr超能文献

用于医学图像分割与合成的对抗置信学习

Adversarial Confidence Learning for Medical Image Segmentation and Synthesis.

作者信息

Nie Dong, Shen Dinggang

机构信息

Department of Computer Science, University of North Carolina at Chapel Hill, NC 27514, USA.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA.

出版信息

Int J Comput Vis. 2020 Nov;128(10-11):2494-2513. doi: 10.1007/s11263-020-01321-2. Epub 2020 Mar 21.

Abstract

Generative adversarial networks (GAN) are widely used in medical image analysis tasks, such as medical image segmentation and synthesis. In these works, adversarial learning is directly applied to the original supervised segmentation (synthesis) networks. The usage of adversarial learning is effective in improving visual perception performance since adversarial learning works as realistic regularization for supervised generators. However, the quantitative performance often cannot improve as much as the qualitative performance, and it can even become worse in some cases. In this paper, we explore how we can take better advantage of adversarial learning in supervised segmentation (synthesis) models and propose an adversarial confidence learning framework to better model these problems. We analyze the roles of discriminator in the classic GANs and compare them with those in supervised adversarial systems. Based on this analysis, we propose adversarial confidence learning, i.e., besides the adversarial learning for emphasizing visual perception, we use the confidence information provided by the adversarial network to enhance the design of supervised segmentation (synthesis) network. In particular, we propose using a fully convolutional adversarial network for confidence learning to provide voxel-wise and region-wise confidence information for the segmentation (synthesis) network. With these settings, we propose a difficulty-aware attention mechanism to properly handle hard samples or regions by taking structural information into consideration so that we can better deal with the irregular distribution of medical data. Furthermore, we investigate the loss functions of various GANs and propose using the binary cross entropy loss to train the proposed adversarial system so that we can retain the unlimited modeling capacity of the discriminator. Experimental results on clinical and challenge datasets show that our proposed network can achieve state-of-the-art segmentation (synthesis) accuracy. Further analysis also indicates that adversarial confidence learning can both improve the visual perception performance and the quantitative performance.

摘要

生成对抗网络(GAN)广泛应用于医学图像分析任务,如医学图像分割与合成。在这些工作中,对抗学习直接应用于原始的监督分割(合成)网络。对抗学习的使用在提高视觉感知性能方面是有效的,因为对抗学习作为监督生成器的逼真正则化起作用。然而,定量性能往往无法像定性性能那样提高,甚至在某些情况下可能会变得更差。在本文中,我们探讨如何在监督分割(合成)模型中更好地利用对抗学习,并提出一种对抗置信学习框架来更好地对这些问题进行建模。我们分析了判别器在经典GAN中的作用,并将它们与监督对抗系统中的作用进行比较。基于此分析,我们提出对抗置信学习,即除了用于强调视觉感知的对抗学习之外,我们利用对抗网络提供的置信信息来增强监督分割(合成)网络的设计。特别是,我们提出使用全卷积对抗网络进行置信学习,为分割(合成)网络提供逐体素和逐区域的置信信息。通过这些设置,我们提出一种难度感知注意力机制,通过考虑结构信息来正确处理困难样本或区域,以便我们能够更好地处理医学数据的不规则分布。此外,我们研究了各种GAN的损失函数,并提出使用二元交叉熵损失来训练所提出的对抗系统,以便我们能够保留判别器的无限建模能力。在临床和挑战数据集上的实验结果表明,我们提出的网络能够实现当前最优的分割(合成)精度。进一步的分析还表明,对抗置信学习既可以提高视觉感知性能,也可以提高定量性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5e7/8211108/6b0550ba2548/nihms-1578728-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验