Suppr超能文献

二甲双胍对人心脏能量代谢的双相作用。

Biphasic effect of metformin on human cardiac energetics.

机构信息

Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin.

Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin.

出版信息

Transl Res. 2021 Mar;229:5-23. doi: 10.1016/j.trsl.2020.10.002. Epub 2020 Oct 10.

Abstract

Metformin is the first-line medication for treatment of type 2 diabetes and has been shown to reduce heart damage and death. However, mechanisms by which metformin protects human heart remain debated. The aim of the study was to evaluate the cardioprotective effect of metformin on cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) and mitochondria isolated from human cardiac tissue. At concentrations ≤2.5 mM, metformin significantly increased oxygen consumption rate (OCR) in the hiPSC-CMs by activating adenosine monophosphate activated protein kinase (AMPK)-dependent signaling and enhancing mitochondrial biogenesis. This effect was abrogated by compound C, an inhibitor of AMPK. At concentrations >5 mM, metformin inhibited the cellular OCR and triggered metabolic reprogramming by enhancing glycolysis and glutaminolysis in the cardiomyocytes. In isolated cardiac mitochondria, metformin did not increase the OCR at any concentrations but inhibited the OCR starting at 1 mM through direct inhibition of electron-transport chain complex I. This was associated with reduction of superoxide production and attenuation of Ca-induced mitochondrial permeability transition pore (mPTP) opening in the mitochondria. Thus, in human heart, metformin might improve cardioprotection due to its biphasic effect on mitochondria: at low concentrations, it activates mitochondrial biogenesis via AMPK signaling and increases the OCR; at high concentrations, it inhibits the respiration by directly affecting the activity of complex I, reduces oxidative stress and delays mPTP formation. Moreover, metformin at high concentrations causes metabolic reprogramming by enhancing glycolysis and glutaminolysis. These effects can be a beneficial adjunct to patients with impaired endogenous cardioprotective responses.

摘要

二甲双胍是治疗 2 型糖尿病的一线药物,已被证明可减少心脏损伤和死亡。然而,二甲双胍保护人类心脏的机制仍存在争议。本研究旨在评估二甲双胍对人诱导多能干细胞(hiPSC-CMs)衍生的心肌细胞和人心肌组织分离的线粒体的心脏保护作用。在浓度≤2.5 mM 时,二甲双胍通过激活 AMP 激活的蛋白激酶(AMPK)依赖性信号通路和增强线粒体生物发生,显著增加 hiPSC-CMs 的耗氧量(OCR)。该作用被 AMPK 抑制剂化合物 C 所阻断。在浓度>5 mM 时,二甲双胍通过增强心肌细胞中的糖酵解和谷氨酰胺分解来抑制细胞 OCR,并触发代谢重编程。在分离的心肌线粒体中,二甲双胍在任何浓度下均未增加 OCR,但从 1 mM 开始通过直接抑制电子传递链复合物 I 抑制 OCR。这与超氧化物产生减少和线粒体钙诱导的通透性转换孔(mPTP)开放的衰减有关。因此,在人心肌中,二甲双胍可能通过其对线粒体的双相作用改善心脏保护作用:在低浓度时,通过 AMPK 信号激活线粒体生物发生并增加 OCR;在高浓度时,通过直接影响复合物 I 的活性抑制呼吸作用,减少氧化应激并延迟 mPTP 的形成。此外,二甲双胍在高浓度时通过增强糖酵解和谷氨酰胺分解来进行代谢重编程。这些作用可能对存在内源性心脏保护反应受损的患者有益。

相似文献

1
Biphasic effect of metformin on human cardiac energetics.
Transl Res. 2021 Mar;229:5-23. doi: 10.1016/j.trsl.2020.10.002. Epub 2020 Oct 10.
2
The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARα-cyclophilin D interaction in cardiomyocytes.
Am J Physiol Heart Circ Physiol. 2015 Apr 1;308(7):H749-58. doi: 10.1152/ajpheart.00414.2014. Epub 2015 Jan 23.
3
Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism.
Biochem Biophys Res Commun. 2017 Apr 29;486(2):329-335. doi: 10.1016/j.bbrc.2017.03.036. Epub 2017 Mar 14.
4
Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening.
Basic Res Cardiol. 2008 May;103(3):274-84. doi: 10.1007/s00395-007-0691-y. Epub 2007 Dec 13.

引用本文的文献

1
Insulin resistance-induced mitochondrial dysfunction and pyroptosis in trophoblasts: protective role of metformin.
BMC Pregnancy Childbirth. 2025 Mar 15;25(1):293. doi: 10.1186/s12884-025-07419-0.
3
Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits.
Int J Mol Sci. 2025 Jan 3;26(1):364. doi: 10.3390/ijms26010364.
4
Mitochondrial quality control in human health and disease.
Mil Med Res. 2024 May 29;11(1):32. doi: 10.1186/s40779-024-00536-5.
5
Can we stop one heart from breaking: triumphs and challenges in cardiac reprogramming.
Curr Opin Genet Dev. 2023 Dec;83:102116. doi: 10.1016/j.gde.2023.102116. Epub 2023 Oct 3.
6
Effects of Metformin on Ischemia/Reperfusion Injury: New Evidence and Mechanisms.
Pharmaceuticals (Basel). 2023 Aug 9;16(8):1121. doi: 10.3390/ph16081121.
7
Metformin preconditioning protects against myocardial stunning and preserves protein translation in a mouse model of cardiac arrest.
J Mol Cell Cardiol Plus. 2023 Jun;4. doi: 10.1016/j.jmccpl.2023.100034. Epub 2023 Apr 5.
9
Perspectives on mitochondrial relevance in cardiac ischemia/reperfusion injury.
Front Cell Dev Biol. 2022 Dec 6;10:1082095. doi: 10.3389/fcell.2022.1082095. eCollection 2022.

本文引用的文献

1
Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK.
Cell Rep. 2019 Nov 5;29(6):1511-1523.e5. doi: 10.1016/j.celrep.2019.09.070.
3
Role of Mitochondria in the Mechanism(s) of Action of Metformin.
Front Endocrinol (Lausanne). 2019 May 7;10:294. doi: 10.3389/fendo.2019.00294. eCollection 2019.
4
Mitochondrial Complex I Inhibition by Metformin Limits Reperfusion Injury.
J Pharmacol Exp Ther. 2019 May;369(2):282-290. doi: 10.1124/jpet.118.254300. Epub 2019 Mar 7.
5
Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice.
Biomed Pharmacother. 2019 Mar;111:1156-1165. doi: 10.1016/j.biopha.2019.01.021. Epub 2019 Jan 12.
7
Benzoylaconine induces mitochondrial biogenesis in mice via activating AMPK signaling cascade.
Acta Pharmacol Sin. 2019 May;40(5):658-665. doi: 10.1038/s41401-018-0174-8. Epub 2018 Oct 12.
9
Cardioprotective Effects of Metformin.
J Cardiovasc Pharmacol. 2018 Aug;72(2):121-127. doi: 10.1097/FJC.0000000000000599.
10
Cardioprotection by Metformin: Beneficial Effects Beyond Glucose Reduction.
Am J Cardiovasc Drugs. 2018 Jun;18(3):181-193. doi: 10.1007/s40256-018-0266-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验