Suppr超能文献

OU 过程在人类微生物组时间动态建模和计算最佳采样方案中的应用。

Application of OU processes to modelling temporal dynamics of the human microbiome, and calculating optimal sampling schemes.

机构信息

Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada.

出版信息

BMC Bioinformatics. 2020 Oct 12;21(1):450. doi: 10.1186/s12859-020-03747-4.

Abstract

BACKGROUND

The vast majority of microbiome research so far has focused on the structure of the microbiome at a single time-point. There have been several studies that measure the microbiome from a particular environment over time. A few models have been developed by extending time series models to accomodate specific features in microbiome data to address questions of stability and interactions of the microbime time series. Most research has observed the stability and mean reversion for some microbiomes. However, little has been done to study the mean reversion rates of these stable microbes and how sampling frequencies are related to such conclusions. In this paper, we begin to rectify this situation. We analyse two widely studied microbial time series data sets on four healthy individuals. We choose to study healthy individuals because we are interested in the baseline temporal dynamics of the microbiome.

RESULTS

For this analysis, we focus on the temporal dynamics of individual genera, absorbing all interactions in a stochastic term. We use a simple stochastic differential equation model to assess the following three questions. (1) Does the microbiome exhibit temporal continuity? (2) Does the microbiome have a stable state? (3) To better understand the temporal dynamics, how frequently should data be sampled in future studies? We find that a simple Ornstein-Uhlenbeck model which incorporates both temporal continuity and reversion to a stable state fits the data for almost every genus better than a Brownian motion model that contains only temporal continuity. The Ornstein-Uhlenbeck model also fits the data better than modelling separate time points as independent. Under the Ornstein-Uhlenbeck model, we calculate the variance of the estimated mean reversion rate (the speed with which each genus returns to its stable state). Based on this calculation, we are able to determine the optimal sample schemes for studying temporal dynamics.

CONCLUSIONS

There is evidence of temporal continuity for most genera; there is clear evidence of a stable state; and the optimal sampling frequency for studying temporal dynamics is in the range of one sample every 0.8-3.2 days.

摘要

背景

迄今为止,绝大多数微生物组研究都集中在单个时间点的微生物组结构上。已经有一些研究在一段时间内从特定环境中测量微生物组。通过将时间序列模型扩展到适应微生物组数据的特定特征,已经开发出一些模型来解决微生物组时间序列的稳定性和相互作用问题。大多数研究都观察到了一些微生物组的稳定性和均值回复。然而,对于这些稳定微生物的均值回复率以及采样频率如何与这些结论相关,研究甚少。在本文中,我们开始纠正这种情况。我们分析了四个健康个体的两个广泛研究的微生物时间序列数据集。我们选择研究健康个体,因为我们对微生物组的基线时间动态感兴趣。

结果

对于这种分析,我们专注于个体属的时间动态,在随机项中吸收所有相互作用。我们使用一个简单的随机微分方程模型来评估以下三个问题。(1)微生物组是否表现出时间连续性?(2)微生物组是否具有稳定状态?(3)为了更好地理解时间动态,未来的研究应该多频繁地采样?我们发现,一个简单的奥恩斯坦-乌伦贝克模型,它既包含时间连续性,又包含向稳定状态的回复,比只包含时间连续性的布朗运动模型更适合几乎所有属的数据。奥恩斯坦-乌伦贝克模型也比单独建模时间点作为独立的模型更适合数据。在奥恩斯坦-乌伦贝克模型下,我们计算了估计的均值回复率(每个属返回其稳定状态的速度)的方差。基于此计算,我们能够确定研究时间动态的最佳采样方案。

结论

大多数属都有时间连续性的证据;有明显的稳定状态的证据;研究时间动态的最佳采样频率在每 0.8-3.2 天采样一次的范围内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b509/7549249/c1fcd2248846/12859_2020_3747_Fig2_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验