Suppr超能文献

重温彩虹:图形推理中有效配色方案设计的建模。

Rainbows Revisited: Modeling Effective Colormap Design for Graphical Inference.

出版信息

IEEE Trans Vis Comput Graph. 2021 Feb;27(2):1032-1042. doi: 10.1109/TVCG.2020.3030439. Epub 2021 Jan 28.

Abstract

Color mapping is a foundational technique for visualizing scalar data. Prior literature offers guidelines for effective colormap design, such as emphasizing luminance variation while limiting changes in hue. However, empirical studies of color are largely focused on perceptual tasks. This narrow focus inhibits our understanding of how generalizable these guidelines are, particularly to tasks like visual inference that require synthesis and judgement across multiple percepts. Furthermore, the emphasis on traditional ramp designs (e.g., sequential or diverging) may sideline other key metrics or design strategies. We study how a cognitive metric-color name variation-impacts people's ability to make model-based judgments. In two graphical inference experiments, participants saw a series of color-coded scalar fields sampled from different models and assessed the relationships between these models. Contrary to conventional guidelines, participants were more accurate when viewing colormaps that cross a variety of uniquely nameable colors. We modeled participants' performance using this metric and found that it provides a better fit to the experimental data than do existing design principles. Our findings indicate cognitive advantages for colorful maps like rainbow, which exhibit high color categorization, despite their traditionally undesirable perceptual properties. We also found no evidence that color categorization would lead observers to infer false data features. Our results provide empirically grounded metrics for predicting a colormap's performance and suggest alternative guidelines for designing new quantitative colormaps to support inference. The data and materials for this paper are available at: https://osf.io/tck2r/.

摘要

颜色映射是可视化标量数据的基础技术。先前的文献提供了有效的色图设计指南,例如强调亮度变化,同时限制色调的变化。然而,对颜色的实证研究主要集中在感知任务上。这种狭隘的焦点限制了我们对这些指南的可推广性的理解,特别是对于需要在多个感知之间进行综合和判断的视觉推理等任务。此外,对传统斜坡设计(例如顺序或发散)的强调可能会忽略其他关键指标或设计策略。我们研究了认知指标——颜色名称变化如何影响人们进行基于模型的判断的能力。在两个图形推理实验中,参与者看到了一系列从不同模型中采样的颜色编码标量场,并评估了这些模型之间的关系。与传统指南相反,当参与者观看跨越各种可命名颜色的色图时,他们的准确性更高。我们使用此指标对参与者的表现进行建模,发现它比现有设计原则更能拟合实验数据。我们的研究结果表明,尽管彩虹等丰富多彩的地图具有传统上不理想的感知特性,但它们在认知上具有优势,因为它们具有高颜色分类。我们也没有发现颜色分类会导致观察者推断错误数据特征的证据。我们的研究结果为预测色图的性能提供了基于经验的指标,并为设计新的定量色图以支持推理提供了替代的设计指南。本文的数据和材料可在:https://osf.io/tck2r/ 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验