Suppr超能文献

18F-FDG PET 影像组学在个体化医学中的作用?

A Role for FDG PET Radiomics in Personalized Medicine?

机构信息

Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; King's College London & Guy's and St Thomas' PET Centre, St Thomas' Hospital, London, UK.

Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Radiology Department, Guy's and St Thomas' Hospitals NHS Trust, London, UK.

出版信息

Semin Nucl Med. 2020 Nov;50(6):532-540. doi: 10.1053/j.semnuclmed.2020.05.002. Epub 2020 Jun 15.

Abstract

Radiomics describes the extraction of multiple features from medical images, including molecular imaging modalities, that with bioinformatic approaches, provide additional clinically relevant information that may be invisible to the human eye. This information may complement standard radiological interpretation with data that may better characterize a disease or that may provide predictive or prognostic information. Progressing from predefined image features, often describing heterogeneity of voxel intensities within a volume of interest, there is increasing use of machine learning to classify disease characteristics and deep learning methods based on artificial neural networks that can learn features without a priori definition and without the need for preprocessing of images. There have been advances in standardization and harmonization of methods to a level that should support multicenter studies. However, in this relatively early phase of research in the field, there are limited aspects that have been adopted into routine practice. Most of the reports in the molecular imaging field describe radiomic approaches in cancer using F-fluorodeoxyglucose positron emission tomography (F-FDG-PET). In this review, we will describe radiomics in molecular imaging and summarize the pertinent literature in lung cancer where reports are most prevalent and mature.

摘要

放射组学描述了从医学图像中提取多种特征,包括分子成像模式,通过生物信息学方法,可以提供额外的临床相关信息,这些信息可能是人眼无法察觉的。这些信息可以通过可能更好地描述疾病的或可能提供预测或预后信息的数据来补充标准的放射学解释。从预定义的图像特征发展而来,这些特征通常描述了感兴趣体积内体素强度的异质性,现在越来越多地使用机器学习来对疾病特征进行分类,以及基于人工神经网络的深度学习方法,这些方法可以在没有先验定义和不需要对图像进行预处理的情况下学习特征。在方法的标准化和协调方面已经取得了进展,应该可以支持多中心研究。然而,在该领域的研究相对早期阶段,只有有限的几个方面已经被纳入常规实践。在分子成像领域的大多数报告中,使用 F-氟脱氧葡萄糖正电子发射断层扫描(F-FDG-PET)描述了癌症的放射组学方法。在这篇综述中,我们将描述分子成像中的放射组学,并总结在肺癌中最常见和成熟的相关文献。

相似文献

1
A Role for FDG PET Radiomics in Personalized Medicine?
Semin Nucl Med. 2020 Nov;50(6):532-540. doi: 10.1053/j.semnuclmed.2020.05.002. Epub 2020 Jun 15.
2
Challenges and Promises of PET Radiomics.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1083-1089. doi: 10.1016/j.ijrobp.2017.12.268. Epub 2018 Jan 31.
4
Plausibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer.
Med Phys. 2021 Mar;48(3):1226-1238. doi: 10.1002/mp.14684. Epub 2021 Feb 6.
5
Optimized Feature Extraction for Radiomics Analysis of F-FDG PET Imaging.
J Nucl Med. 2019 Jun;60(6):864-872. doi: 10.2967/jnumed.118.217612. Epub 2018 Nov 2.
7
Impact of respiratory motion on F-FDG PET radiomics stability: Clinical evaluation with a digital PET scanner.
J Appl Clin Med Phys. 2023 Dec;24(12):e14200. doi: 10.1002/acm2.14200. Epub 2023 Nov 8.
9
Fully Automated Region-Specific Human-Perceptive-Equivalent Image Quality Assessment: Application to 18 F-FDG PET Scans.
Clin Nucl Med. 2024 Dec 1;49(12):1079-1090. doi: 10.1097/RLU.0000000000005526. Epub 2024 Oct 21.
10
Radiomics and Artificial Intelligence Landscape for [F]FDG PET/CT in Multiple Myeloma.
Semin Nucl Med. 2025 May;55(3):387-395. doi: 10.1053/j.semnuclmed.2024.11.005. Epub 2024 Dec 13.

引用本文的文献

1
Summary Report of the SNMMI AI Task Force Radiomics Challenge 2024.
J Nucl Med. 2025 Aug 1;66(8):1169-1175. doi: 10.2967/jnumed.124.269425.
5
The Role of Molecular Imaging in Personalized Medicine.
J Pers Med. 2023 Feb 19;13(2):369. doi: 10.3390/jpm13020369.
6
Principal component analysis of texture features derived from FDG PET images of melanoma lesions.
EJNMMI Phys. 2022 Sep 15;9(1):64. doi: 10.1186/s40658-022-00491-x.
10
[F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation.
Eur J Nucl Med Mol Imaging. 2021 Oct;48(11):3432-3443. doi: 10.1007/s00259-021-05303-5. Epub 2021 Mar 26.

本文引用的文献

1
Radiomics of F Fluorodeoxyglucose PET/CT Images Predicts Severe Immune-related Adverse Events in Patients with NSCLC.
Radiol Artif Intell. 2020 Jan 29;2(1):e190063. doi: 10.1148/ryai.2019190063. eCollection 2020 Jan.
2
4
Introduction to Radiomics.
J Nucl Med. 2020 Apr;61(4):488-495. doi: 10.2967/jnumed.118.222893. Epub 2020 Feb 14.
6
Radiomics of F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy.
Eur J Nucl Med Mol Imaging. 2020 May;47(5):1168-1182. doi: 10.1007/s00259-019-04625-9. Epub 2019 Dec 5.
7
Heterogeneity in tumours: Validating the use of radiomic features on F-FDG PET/CT scans of lung cancer patients as a prognostic tool.
Radiother Oncol. 2020 Mar;144:72-78. doi: 10.1016/j.radonc.2019.10.012. Epub 2019 Nov 14.
9
Predictive Power of a Radiomic Signature Based on F-FDG PET/CT Images for EGFR Mutational Status in NSCLC.
Front Oncol. 2019 Oct 15;9:1062. doi: 10.3389/fonc.2019.01062. eCollection 2019.
10
The Dark Side of Radiomics: On the Paramount Importance of Publishing Negative Results.
J Nucl Med. 2019 Nov;60(11):1543-1544. doi: 10.2967/jnumed.119.235325. Epub 2019 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验