Suppr超能文献

基于迁移学习的二维方法用于通过脑电信号进行酒精中毒易感性分类

Bi-Dimensional Approach Based on Transfer Learning for Alcoholism Pre-disposition Classification via EEG Signals.

作者信息

Zhang Hongyi, Silva Francisco H S, Ohata Elene F, Medeiros Aldisio G, Rebouças Filho Pedro P

机构信息

School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.

Laboratório de Processamento de Imagens, Sinais e Computação Aplicada, Instituto Federal do Ceará, Fortaleza, Brazil.

出版信息

Front Hum Neurosci. 2020 Sep 18;14:365. doi: 10.3389/fnhum.2020.00365. eCollection 2020.

Abstract

Recent statistics have shown that the main difficulty in detecting alcoholism is the unreliability of the information presented by patients with alcoholism; this factor confusing the early diagnosis and it can reduce the effectiveness of treatment. However, electroencephalogram (EEG) exams can provide more reliable data for analysis of this behavior. This paper proposes a new approach for the automatic diagnosis of patients with alcoholism and introduces an analysis of the EEG signals from a two-dimensional perspective according to changes in the neural activity, highlighting the influence of high and low-frequency signals. This approach uses a two-dimensional feature extraction method, as well as the application of recent Computer Vision (CV) techniques, such as Transfer Learning with Convolutional Neural Networks (CNN). The methodology to evaluate our proposal used 21 combinations of the traditional classification methods and 84 combinations of recent CNN architectures used as feature extractors combined with the following classical classifiers: Gaussian Naive Bayes, K-Nearest Neighbor (k-NN), Multilayer Perceptron (MLP), Random Forest (RF) and Support Vector Machine (SVM). CNN MobileNet combined with SVM achieved the best results in Accuracy (95.33%), Precision (95.68%), F1-Score (95.24%), and Recall (95.00%). This combination outperformed the traditional methods by up to 8%. Thus, this approach is applicable as a classification stage for computer-aided diagnoses, useful for the triage of patients, and clinical support for the early diagnosis of this disease.

摘要

最近的统计数据表明,检测酒精中毒的主要困难在于酒精中毒患者提供信息的不可靠性;这一因素干扰了早期诊断,并会降低治疗效果。然而,脑电图(EEG)检查可以为分析这种行为提供更可靠的数据。本文提出了一种酒精中毒患者自动诊断的新方法,并根据神经活动的变化从二维角度介绍了对EEG信号的分析,突出了高频和低频信号的影响。这种方法使用二维特征提取方法,以及应用最近的计算机视觉(CV)技术,如卷积神经网络(CNN)的迁移学习。评估我们提议的方法使用了21种传统分类方法的组合和84种最近用作特征提取器的CNN架构的组合,并结合以下经典分类器:高斯朴素贝叶斯、K近邻(k-NN)、多层感知器(MLP)、随机森林(RF)和支持向量机(SVM)。CNN MobileNet与SVM相结合在准确率(95.33%)、精确率(95.68%)、F1分数(95.24%)和召回率(95.00%)方面取得了最佳结果。这种组合比传统方法的表现高出8%。因此,这种方法可作为计算机辅助诊断的分类阶段,对患者分流有用,并为该疾病的早期诊断提供临床支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c00/7530264/5c2b92bee0b3/fnhum-14-00365-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验