Suppr超能文献

一种新的深度学习方法与临床数据相结合,用于对早期黑色素瘤与非典型痣进行皮肤镜鉴别。

A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi.

机构信息

Dermatology Unit, Department of Medical, Surgical and Neurosciences, University of Siena, Italy.

Department of Information Engineering and Mathematics, University of Siena, Siena, Italy; Department of Economy Engineering Society and Buisiness, Tuscia University, Viterbo, Italy.

出版信息

J Dermatol Sci. 2021 Feb;101(2):115-122. doi: 10.1016/j.jdermsci.2020.11.009. Epub 2020 Dec 2.

Abstract

BACKGROUND

Timely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic examination is influenced by dermatologists' experience and fails to achieve adequate accuracy and reproducibility in discriminating atypical nevi (AN) from early melanomas (EM).

OBJECTIVE

We aimed to develop a Deep Convolutional Neural Network (DCNN) model able to support dermatologists in the classification and management of atypical melanocytic skin lesions (aMSL).

METHODS

A training set (630 images), a validation set (135) and a testing set (214) were derived from the idScore dataset of 979 challenging aMSL cases in which the dermoscopic image is integrated with clinical data (age, sex, body site and diameter) and associated with histological data. A DCNN_aMSL architecture was designed and then trained on both dermoscopic images of aMSL and the clinical/anamnestic data, resulting in the integrated "iDCNN_aMSL" model. Responses of 111 dermatologists with different experience levels on both aMSL classification (intuitive diagnosis) and management decisions (no/long follow-up; short follow-up; excision/preventive excision) were compared with the DCNNs models.

RESULTS

In the lesion classification study, the iDCNN_aMSL achieved the best accuracy, reaching an AUC = 90.3 %, SE = 86.5 % and SP = 73.6 %, compared to DCNN_aMSL (SE = 89.2 %, SP = 65.7 %) and intuitive diagnosis of dermatologists (SE = 77.0 %; SP = 61.4 %).

CONCLUSIONS

The iDCNN_aMSL proved to be the best support tool for management decisions reducing the ratio of inappropriate excision. The proposed iDCNN_aMSL model can represent a valid support for dermatologists in discriminating AN from EM with high accuracy and for medical decision making by reducing their rates of inappropriate excisions.

摘要

背景

及时识别恶性黑色素瘤(MM)对全球皮肤科医生来说是一个挑战,也是死亡率的主要决定因素。皮肤镜检查受皮肤科医生经验的影响,在区分非典型痣(AN)和早期黑色素瘤(EM)方面无法达到足够的准确性和可重复性。

目的

我们旨在开发一种深度卷积神经网络(DCNN)模型,以帮助皮肤科医生对非典型黑素细胞皮肤病变(aMSL)进行分类和管理。

方法

从 idScore 数据集的 979 例具有挑战性的 aMSL 病例中得出训练集(630 张图像)、验证集(135 张)和测试集(214 张),其中整合了皮肤镜图像和临床数据(年龄、性别、身体部位和直径),并与组织学数据相关联。设计了一种 DCNN_aMSL 架构,然后对 aMSL 的皮肤镜图像和临床/病史数据进行训练,从而产生集成的“iDCNN_aMSL”模型。比较了 111 名不同经验水平的皮肤科医生对 aMSL 分类(直观诊断)和管理决策(无/长期随访;短期随访;切除/预防性切除)的反应与 DCNN 模型。

结果

在病变分类研究中,iDCNN_aMSL 的准确率最高,达到 AUC = 90.3%,SE = 86.5%和 SP = 73.6%,而 DCNN_aMSL 的 SE = 89.2%,SP = 65.7%和皮肤科医生的直观诊断的 SE = 77.0%,SP = 61.4%。

结论

iDCNN_aMSL 被证明是管理决策的最佳支持工具,减少了不适当切除的比例。所提出的 iDCNN_aMSL 模型可以为皮肤科医生提供准确的支持,帮助他们准确地区分 AN 和 EM,并通过降低他们的不适当切除率来做出医疗决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验