Suppr超能文献

使用卷积神经网络对内镜图像中的食管病变进行自动分类。

Automatic classification of esophageal lesions in endoscopic images using a convolutional neural network.

作者信息

Liu Gaoshuang, Hua Jie, Wu Zhan, Meng Tianfang, Sun Mengxue, Huang Peiyun, He Xiaopu, Sun Weihao, Li Xueliang, Chen Yang

机构信息

Department of Geriatric Gerontology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.

Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.

出版信息

Ann Transl Med. 2020 Apr;8(7):486. doi: 10.21037/atm.2020.03.24.

Abstract

BACKGROUND

Using deep learning techniques in image analysis is a dynamically emerging field. This study aims to use a convolutional neural network (CNN), a deep learning approach, to automatically classify esophageal cancer (EC) and distinguish it from premalignant lesions.

METHODS

A total of 1,272 white-light images were adopted from 748 subjects, including normal cases, premalignant lesions, and cancerous lesions; 1,017 images were used to train the CNN, and another 255 images were examined to evaluate the CNN architecture. Our proposed CNN structure consists of two subnetworks (O-stream and P-stream). The original images were used as the inputs of the O-stream to extract the color and global features, and the pre-processed esophageal images were used as the inputs of the P-stream to extract the texture and detail features.

RESULTS

The CNN system we developed achieved an accuracy of 85.83%, a sensitivity of 94.23%, and a specificity of 94.67% after the fusion of the 2 streams was accomplished. The classification accuracy of normal esophagus, premalignant lesion, and EC were 94.23%, 82.5%, and 77.14%, respectively, which shows a better performance than the Local Binary Patterns (LBP) + Support Vector Machine (SVM) and Histogram of Gradient (HOG) + SVM methods. A total of 8 of the 35 (22.85%) EC lesions were categorized as premalignant lesions because of their slightly reddish and flat lesions.

CONCLUSIONS

The CNN system, with 2 streams, demonstrated high sensitivity and specificity with the endoscopic images. It obtained better detection performance than the currently used methods based on the same datasets and has great application prospects in assisting endoscopists to distinguish esophageal lesion subclasses.

摘要

背景

在图像分析中使用深度学习技术是一个动态发展的领域。本研究旨在使用深度学习方法卷积神经网络(CNN)对食管癌(EC)进行自动分类,并将其与癌前病变区分开来。

方法

共采集了748名受试者的1272张白光图像,包括正常病例、癌前病变和癌性病变;1017张图像用于训练CNN,另外255张图像用于评估CNN架构。我们提出的CNN结构由两个子网络(O流和P流)组成。原始图像用作O流的输入以提取颜色和全局特征,预处理后的食管图像用作P流的输入以提取纹理和细节特征。

结果

我们开发的CNN系统在两个流融合后,准确率达到85.83%,灵敏度达到94.23%,特异性达到94.67%。正常食管、癌前病变和EC的分类准确率分别为94.23%、82.5%和77.14%,表现优于局部二值模式(LBP)+支持向量机(SVM)和梯度直方图(HOG)+SVM方法。35例(22.85%)EC病变中有8例因其病变微红且扁平而被归类为癌前病变。

结论

具有两个流的CNN系统在内窥镜图像上表现出高灵敏度和特异性。在相同数据集上,它比目前使用的方法具有更好的检测性能,在协助内镜医师区分食管病变亚类方面具有很大的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6d4/7210177/669be90a1e8a/atm-08-07-486-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验