Ramaekers Kaat, Rector Annabel, Cuypers Lize, Lemey Philippe, Keyaerts Els, Van Ranst Marc
KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium.
University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, BE-3000 Leuven, Belgium.
Virus Evol. 2020 Jul 24;6(2):veaa052. doi: 10.1093/ve/veaa052. eCollection 2020 Jul.
Since the first human respiratory syncytial virus (HRSV) genotype classification in 1998, inconsistent conclusions have been drawn regarding the criteria that define HRSV genotypes and their nomenclature, challenging data comparisons between research groups. In this study, we aim to unify the field of HRSV genotype classification by reviewing the different methods that have been used in the past to define HRSV genotypes and by proposing a new classification procedure, based on well-established phylogenetic methods. All available complete HRSV genomes (>12,000 bp) were downloaded from GenBank and divided into the two subgroups: HRSV-A and HRSV-B. From whole-genome alignments, the regions that correspond to the open reading frame of the glycoprotein G and the second hypervariable region (HVR2) of the ectodomain were extracted. In the resulting partial alignments, the phylogenetic signal within each fragment was assessed. Maximum likelihood phylogenetic trees were reconstructed using the complete genome alignments. Patristic distances were calculated between all pairs of tips in the phylogenetic tree and summarized as a density plot in order to determine a cutoff value at the lowest point following the major distance peak. Our data show that neither the HVR2 fragment nor the G gene contains sufficient phylogenetic signal to perform reliable phylogenetic reconstruction. Therefore, whole-genome alignments were used to determine HRSV genotypes. We define a genotype using the following criteria: a bootstrap support of 70 per cent for the respective clade and a maximum patristic distance between all members of the clade of ≤0.018 substitutions per site for HRSV-A or ≤0.026 substitutions per site for HRSV-B. By applying this definition, we distinguish twenty-three genotypes within subtype HRSV-A and six genotypes within subtype HRSV-B. Applying the genotype criteria on subsampled data sets confirmed the robustness of the method.
自1998年首次对人呼吸道合胞病毒(HRSV)进行基因型分类以来,关于定义HRSV基因型的标准及其命名法得出了不一致的结论,这对研究组之间的数据比较提出了挑战。在本研究中,我们旨在通过回顾过去用于定义HRSV基因型的不同方法,并基于成熟的系统发育方法提出一种新的分类程序,来统一HRSV基因型分类领域。从GenBank下载了所有可用的完整HRSV基因组(>12,000 bp),并将其分为两个亚组:HRSV-A和HRSV-B。从全基因组比对中,提取与糖蛋白G的开放阅读框和胞外域的第二个高变区(HVR2)相对应的区域。在所得的部分比对中,评估每个片段内的系统发育信号。使用完整的基因组比对重建最大似然系统发育树。计算系统发育树中所有末端对之间的简约距离,并汇总为密度图,以便在主要距离峰值之后的最低点确定一个截止值。我们的数据表明,HVR2片段和G基因都不包含足够的系统发育信号来进行可靠的系统发育重建。因此,使用全基因组比对来确定HRSV基因型。我们使用以下标准定义一个基因型:相应分支的自展支持率为70%,并且该分支所有成员之间的最大简约距离对于HRSV-A为每个位点≤0.018个替换,对于HRSV-B为每个位点≤0.026个替换。通过应用这个定义,我们在HRSV-A亚型中区分出23个基因型,在HRSV-B亚型中区分出6个基因型。将基因型标准应用于抽样数据集证实了该方法的稳健性。