Suppr超能文献

简化新冠病毒的诊断并拓展其检测极限

Easing diagnosis and pushing the detection limits of SARS-CoV-2.

作者信息

Kiran Uday, Gokulan C G, Kuncha Santosh Kumar, Vedagiri Dhiviya, Chander Bingi Thrilok, Sekhar Aedula Vinaya, Dontamala Suchitra, Reddy Arakatla Lohith, Tallapaka Karthik Bharadwaj, Mishra Rakesh K, Harshan Krishnan Harinivas

机构信息

CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.

出版信息

Biol Methods Protoc. 2020 Aug 20;5(1):bpaa017. doi: 10.1093/biomethods/bpaa017. eCollection 2020.

Abstract

Rigorous testing is the way forward to fight the coronavirus disease 2019 pandemic. Here we show that the currently used and most reliable reverse transcription-polymerase chain reaction-based severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) procedure can be further simplified to make it faster, safer, and economical by eliminating the RNA isolation step. The modified method is not only fast and convenient but also at par with the traditional method in terms of accuracy, and therefore can be used for mass screening. Our method takes about half the time and is cheaper by ∼40% compared to the currently used method. We also provide a variant of the new method that increases the efficiency of detection by ∼30% compared to the existing procedure. Taken together, we demonstrate a more effective and reliable method of SARS-CoV-2 detection.

摘要

严格检测是抗击2019冠状病毒病大流行的前进方向。在此我们表明,目前使用的、最可靠的基于逆转录-聚合酶链反应的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)检测程序可以通过省去RNA分离步骤进一步简化,从而使其更快、更安全且更经济。改进后的方法不仅快速便捷,而且在准确性方面与传统方法相当,因此可用于大规模筛查。与目前使用的方法相比,我们的方法所需时间约为其一半,成本降低约40%。我们还提供了新方法的一个变体,与现有程序相比,其检测效率提高了约30%。综上所述,我们展示了一种更有效、更可靠的SARS-CoV-2检测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6680/7548030/bb7627c76f80/bpaa017f1.jpg

相似文献

1
Easing diagnosis and pushing the detection limits of SARS-CoV-2.
Biol Methods Protoc. 2020 Aug 20;5(1):bpaa017. doi: 10.1093/biomethods/bpaa017. eCollection 2020.
3
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) universal screening in gravids during labor and delivery.
Eur J Obstet Gynecol Reprod Biol. 2021 Jan;256:400-404. doi: 10.1016/j.ejogrb.2020.11.069. Epub 2020 Dec 1.
5
7
Rapid processing of SARS-CoV-2 containing specimens for direct RT-PCR.
PLoS One. 2021 Feb 10;16(2):e0246867. doi: 10.1371/journal.pone.0246867. eCollection 2021.
8
Use of a simplified sample processing step without RNA extraction for direct SARS-CoV-2 RT-PCR detection.
J Clin Virol. 2020 Nov;132:104587. doi: 10.1016/j.jcv.2020.104587. Epub 2020 Aug 11.
9
A Direct Method for RT-PCR Detection of SARS-CoV-2 in Clinical Samples.
Healthcare (Basel). 2021 Jan 4;9(1):37. doi: 10.3390/healthcare9010037.
10
[SARS-CoV-2 and Microbiological Diagnostic Dynamics in COVID-19 Pandemic].
Mikrobiyol Bul. 2020 Jul;54(3):497-509. doi: 10.5578/mb.69839.

引用本文的文献

1
Dry Swabs and Dried Saliva as Alternative Samples for SARS-CoV-2 Detection in Remote Areas in Lao PDR.
Open Forum Infect Dis. 2024 Jul 23;11(8):ofae433. doi: 10.1093/ofid/ofae433. eCollection 2024 Aug.
2
Nucleic Acid Based Testing (NABing): A Game Changer Technology for Public Health.
Mol Biotechnol. 2024 Sep;66(9):2168-2200. doi: 10.1007/s12033-023-00870-4. Epub 2023 Sep 11.
3
Dry Swab-Based Nucleic Acid Extraction vs. Spin Column-Based Nucleic Acid Extraction for COVID-19 RT-PCR Testing: A Comparative Study.
Can J Infect Dis Med Microbiol. 2023 Aug 23;2023:6624932. doi: 10.1155/2023/6624932. eCollection 2023.
4
Challenges of SARS-CoV-2 genomic surveillance in India during low positivity rate scenario.
Front Public Health. 2023 Jun 27;11:1117602. doi: 10.3389/fpubh.2023.1117602. eCollection 2023.
5
Multidimensional futuristic approaches to address the pandemics beyond COVID-19.
Heliyon. 2023 Jun;9(6):e17148. doi: 10.1016/j.heliyon.2023.e17148. Epub 2023 Jun 11.
8
Inactivation of SARS-CoV-2 by β-propiolactone causes aggregation of viral particles and loss of antigenic potential.
Virus Res. 2021 Nov;305:198555. doi: 10.1016/j.virusres.2021.198555. Epub 2021 Sep 4.
9
Effect of different storage conditions on COVID-19 RT-PCR results.
J Med Virol. 2021 Dec;93(12):6575-6581. doi: 10.1002/jmv.27204. Epub 2021 Jul 28.
10
Wuhan to World: The COVID-19 Pandemic.
Front Cell Infect Microbiol. 2021 Mar 30;11:596201. doi: 10.3389/fcimb.2021.596201. eCollection 2021.

本文引用的文献

1
Direct RT-qPCR detection of SARS-CoV-2 RNA from patient nasopharyngeal swabs without an RNA extraction step.
PLoS Biol. 2020 Oct 2;18(10):e3000896. doi: 10.1371/journal.pbio.3000896. eCollection 2020 Oct.
2
Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR.
Nat Commun. 2020 Sep 23;11(1):4812. doi: 10.1038/s41467-020-18611-5.
3
Optimization of Chelex 100 resin-based extraction of genomic DNA from dried blood spots.
Biol Methods Protoc. 2020 May 2;5(1):bpaa009. doi: 10.1093/biomethods/bpaa009. eCollection 2020.
4
Fast SARS-CoV-2 detection by RT-qPCR in preheated nasopharyngeal swab samples.
Int J Infect Dis. 2020 Aug;97:66-68. doi: 10.1016/j.ijid.2020.05.099. Epub 2020 May 31.
6
Assay Techniques and Test Development for COVID-19 Diagnosis.
ACS Cent Sci. 2020 May 27;6(5):591-605. doi: 10.1021/acscentsci.0c00501. Epub 2020 Apr 30.
7
Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19.
J Med Virol. 2020 Jul;92(7):903-908. doi: 10.1002/jmv.25786. Epub 2020 Apr 5.
8
Diagnosis of SARS-CoV-2 infection based on CT scan vs RT-PCR: reflecting on experience from MERS-CoV.
J Hosp Infect. 2020 Jun;105(2):154-155. doi: 10.1016/j.jhin.2020.03.001. Epub 2020 Mar 6.
9
A new coronavirus associated with human respiratory disease in China.
Nature. 2020 Mar;579(7798):265-269. doi: 10.1038/s41586-020-2008-3. Epub 2020 Feb 3.
10
State of the Science in Dried Blood Spots.
Clin Chem. 2018 Apr;64(4):656-679. doi: 10.1373/clinchem.2017.275966. Epub 2017 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验