Suppr超能文献

基于病变掩码的生成对抗网络同时合成解剖学和分子磁共振图像

Lesion Mask-Based Simultaneous Synthesis of Anatomic and Molecular MR Images Using a GAN.

作者信息

Guo Pengfei, Wang Puyang, Zhou Jinyuan, Patel Vishal M, Jiang Shanshan

机构信息

Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Med Image Comput Comput Assist Interv. 2020 Oct;12262:104-113. doi: 10.1007/978-3-030-59713-9_11. Epub 2020 Sep 29.

Abstract

Data-driven automatic approaches have demonstrated their great potential in resolving various clinical diagnostic dilemmas for patients with malignant gliomas in neuro-oncology with the help of conventional and advanced molecular MR images. However, the lack of sufficient annotated MRI data has vastly impeded the development of such automatic methods. Conventional data augmentation approaches, including flipping, scaling, rotation, and distortion are not capable of generating data with diverse image content. In this paper, we propose a method, called synthesis of anatomic and molecular MR images network (SAMR), which can simultaneously synthesize data from arbitrary manipulated lesion information on multiple anatomic and molecular MRI sequences, including T1-weighted ( w), gadolinium enhanced w (Gd- w), T2-weighted ( w), fluid-attenuated inversion recovery (), and amide proton transfer-weighted (w). The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators. Extensive experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.

摘要

数据驱动的自动方法已借助传统和先进的分子磁共振成像(MR)图像,在解决神经肿瘤学中恶性胶质瘤患者的各种临床诊断难题方面展现出巨大潜力。然而,缺乏足够的标注MRI数据极大地阻碍了此类自动方法的发展。传统的数据增强方法,包括翻转、缩放、旋转和扭曲,无法生成具有多样图像内容的数据。在本文中,我们提出了一种名为解剖和分子MR图像合成网络(SAMR)的方法,它可以同时从多个解剖和分子MRI序列上的任意操纵病变信息合成数据,包括T1加权(T1w)、钆增强T1w(Gd-T1w)、T2加权(T2w)、液体衰减反转恢复(FLAIR)和酰胺质子转移加权(APTw)。所提出的框架由一个展开式上采样模块、一个脑图谱编码器、一个分割一致性模块和多尺度标签判别器组成。对真实临床数据进行的大量实验表明,所提出的模型在性能上显著优于当前最先进的合成方法。

相似文献

1
2
Anatomic and Molecular MR Image Synthesis Using Confidence Guided CNNs.基于置信引导 CNN 的解剖和分子磁共振图像合成。
IEEE Trans Med Imaging. 2021 Oct;40(10):2832-2844. doi: 10.1109/TMI.2020.3046460. Epub 2021 Sep 30.
4
Transformer-Based T2-weighted MRI Synthesis from T1-weighted Images.基于 Transformer 的 T1 加权图像到 T2 加权 MRI 合成。
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:5062-5065. doi: 10.1109/EMBC48229.2022.9871183.

本文引用的文献

1
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
2
Deep OCT image compression with convolutional neural networks.基于卷积神经网络的深度光学相干断层扫描(OCT)图像压缩
Biomed Opt Express. 2020 Jun 8;11(7):3543-3554. doi: 10.1364/BOE.392882. eCollection 2020 Jul 1.
4
Multimodal MR Synthesis via Modality-Invariant Latent Representation.基于模态不变潜在表示的多模态磁共振合成。
IEEE Trans Med Imaging. 2018 Mar;37(3):803-814. doi: 10.1109/TMI.2017.2764326. Epub 2017 Oct 18.
5
Extended Modality Propagation: Image Synthesis of Pathological Cases.扩展模态传播:病理案例的图像合成。
IEEE Trans Med Imaging. 2016 Dec;35(12):2598-2608. doi: 10.1109/TMI.2016.2589760. Epub 2016 Jul 9.
8
Malignant gliomas in adults.成人恶性胶质瘤
N Engl J Med. 2008 Jul 31;359(5):492-507. doi: 10.1056/NEJMra0708126.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验