文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于病变掩码的生成对抗网络同时合成解剖学和分子磁共振图像

Lesion Mask-Based Simultaneous Synthesis of Anatomic and Molecular MR Images Using a GAN.

作者信息

Guo Pengfei, Wang Puyang, Zhou Jinyuan, Patel Vishal M, Jiang Shanshan

机构信息

Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Med Image Comput Comput Assist Interv. 2020 Oct;12262:104-113. doi: 10.1007/978-3-030-59713-9_11. Epub 2020 Sep 29.


DOI:10.1007/978-3-030-59713-9_11
PMID:33073265
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7556330/
Abstract

Data-driven automatic approaches have demonstrated their great potential in resolving various clinical diagnostic dilemmas for patients with malignant gliomas in neuro-oncology with the help of conventional and advanced molecular MR images. However, the lack of sufficient annotated MRI data has vastly impeded the development of such automatic methods. Conventional data augmentation approaches, including flipping, scaling, rotation, and distortion are not capable of generating data with diverse image content. In this paper, we propose a method, called synthesis of anatomic and molecular MR images network (SAMR), which can simultaneously synthesize data from arbitrary manipulated lesion information on multiple anatomic and molecular MRI sequences, including T1-weighted ( w), gadolinium enhanced w (Gd- w), T2-weighted ( w), fluid-attenuated inversion recovery (), and amide proton transfer-weighted (w). The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators. Extensive experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.

摘要

数据驱动的自动方法已借助传统和先进的分子磁共振成像(MR)图像,在解决神经肿瘤学中恶性胶质瘤患者的各种临床诊断难题方面展现出巨大潜力。然而,缺乏足够的标注MRI数据极大地阻碍了此类自动方法的发展。传统的数据增强方法,包括翻转、缩放、旋转和扭曲,无法生成具有多样图像内容的数据。在本文中,我们提出了一种名为解剖和分子MR图像合成网络(SAMR)的方法,它可以同时从多个解剖和分子MRI序列上的任意操纵病变信息合成数据,包括T1加权(T1w)、钆增强T1w(Gd-T1w)、T2加权(T2w)、液体衰减反转恢复(FLAIR)和酰胺质子转移加权(APTw)。所提出的框架由一个展开式上采样模块、一个脑图谱编码器、一个分割一致性模块和多尺度标签判别器组成。对真实临床数据进行的大量实验表明,所提出的模型在性能上显著优于当前最先进的合成方法。

相似文献

[1]
Lesion Mask-Based Simultaneous Synthesis of Anatomic and Molecular MR Images Using a GAN.

Med Image Comput Comput Assist Interv. 2020-10

[2]
Anatomic and Molecular MR Image Synthesis Using Confidence Guided CNNs.

IEEE Trans Med Imaging. 2021-10

[3]
Radiomics analysis of amide proton transfer-weighted and structural MR images for treatment response assessment in malignant gliomas.

NMR Biomed. 2023-1

[4]
Transformer-Based T2-weighted MRI Synthesis from T1-weighted Images.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[5]
IAS-NET: Joint intraclassly adaptive GAN and segmentation network for unsupervised cross-domain in neonatal brain MRI segmentation.

Med Phys. 2021-11

[6]
The role of imaging in the management of adults with diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline.

J Neurooncol. 2015-12

[7]
Amide Proton Transfer-Weighted (APTw) Imaging of Intracranial Infection in Children: Initial Experience and Comparison with Gadolinium-Enhanced T1-Weighted Imaging.

Biomed Res Int. 2020

[8]
Improving segmentation reliability of multi-scanner brain images using a generative adversarial network.

Quant Imaging Med Surg. 2022-3

[9]
Relationship between contrast enhancement on fluid-attenuated inversion recovery MR sequences and signal intensity on T2-weighted MR images: visual evaluation of brain tumors.

J Magn Reson Imaging. 2005-6

[10]
Gadolinium Magnetic Resonance Imaging

2025-1

引用本文的文献

[1]
Multimodal Machine Learning in Image-Based and Clinical Biomedicine: Survey and Prospects.

Int J Comput Vis. 2024

[2]
Enhancing cancer differentiation with synthetic MRI examinations via generative models: a systematic review.

Insights Imaging. 2022-12-12

[3]
Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning.

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2021-6

[4]
Over-and-Under Complete Convolutional RNN for MRI Reconstruction.

Med Image Comput Comput Assist Interv. 2021

[5]
Anatomic and Molecular MR Image Synthesis Using Confidence Guided CNNs.

IEEE Trans Med Imaging. 2021-10

本文引用的文献

[1]
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017

[2]
Deep OCT image compression with convolutional neural networks.

Biomed Opt Express. 2020-6-8

[3]
Identifying Recurrent Malignant Glioma after Treatment Using Amide Proton Transfer-Weighted MR Imaging: A Validation Study with Image-Guided Stereotactic Biopsy.

Clin Cancer Res. 2018-10-26

[4]
Multimodal MR Synthesis via Modality-Invariant Latent Representation.

IEEE Trans Med Imaging. 2017-10-18

[5]
Extended Modality Propagation: Image Synthesis of Pathological Cases.

IEEE Trans Med Imaging. 2016-7-9

[6]
Histopathological correlates with survival in reoperated glioblastomas.

J Neurooncol. 2013-5-11

[7]
A reproducible evaluation of ANTs similarity metric performance in brain image registration.

Neuroimage. 2010-9-17

[8]
Malignant gliomas in adults.

N Engl J Med. 2008-7-31

[9]
Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI.

Nat Med. 2003-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索