文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过生成模型利用合成磁共振成像检查增强癌症分化:一项系统综述

Enhancing cancer differentiation with synthetic MRI examinations via generative models: a systematic review.

作者信息

Dimitriadis Avtantil, Trivizakis Eleftherios, Papanikolaou Nikolaos, Tsiknakis Manolis, Marias Kostas

机构信息

Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Greece.

Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410, Heraklion, Greece.

出版信息

Insights Imaging. 2022 Dec 12;13(1):188. doi: 10.1186/s13244-022-01315-3.


DOI:10.1186/s13244-022-01315-3
PMID:36503979
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9742072/
Abstract

Contemporary deep learning-based decision systems are well-known for requiring high-volume datasets in order to produce generalized, reliable, and high-performing models. However, the collection of such datasets is challenging, requiring time-consuming processes involving also expert clinicians with limited time. In addition, data collection often raises ethical and legal issues and depends on costly and invasive procedures. Deep generative models such as generative adversarial networks and variational autoencoders can capture the underlying distribution of the examined data, allowing them to create new and unique instances of samples. This study aims to shed light on generative data augmentation techniques and corresponding best practices. Through in-depth investigation, we underline the limitations and potential methodology pitfalls from critical standpoint and aim to promote open science research by identifying publicly available open-source repositories and datasets.

摘要

当代基于深度学习的决策系统因需要大量数据集才能生成通用、可靠且高性能的模型而闻名。然而,收集此类数据集具有挑战性,需要耗时的过程,其中还涉及时间有限的临床专家。此外,数据收集往往会引发伦理和法律问题,且依赖于成本高昂且具有侵入性的程序。诸如生成对抗网络和变分自编码器等深度生成模型可以捕捉所检查数据的潜在分布,从而使它们能够创建新的、独特的样本实例。本研究旨在阐明生成式数据增强技术及相应的最佳实践。通过深入调查,我们从批判性的角度强调了局限性和潜在的方法陷阱,并旨在通过识别公开可用的开源存储库和数据集来促进开放科学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/63a3a978689f/13244_2022_1315_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/86f219d75a0d/13244_2022_1315_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/ed4f05a6b001/13244_2022_1315_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/5717c73174f8/13244_2022_1315_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/7acfcbfc383e/13244_2022_1315_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/4752747a3689/13244_2022_1315_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/ec0d9f749452/13244_2022_1315_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/91a0634d1f93/13244_2022_1315_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/84ac42313ff6/13244_2022_1315_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/8e6dea5efb4d/13244_2022_1315_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/75f78bfeeef6/13244_2022_1315_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/63a3a978689f/13244_2022_1315_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/86f219d75a0d/13244_2022_1315_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/ed4f05a6b001/13244_2022_1315_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/5717c73174f8/13244_2022_1315_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/7acfcbfc383e/13244_2022_1315_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/4752747a3689/13244_2022_1315_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/ec0d9f749452/13244_2022_1315_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/91a0634d1f93/13244_2022_1315_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/84ac42313ff6/13244_2022_1315_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/8e6dea5efb4d/13244_2022_1315_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/75f78bfeeef6/13244_2022_1315_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5df/9742072/63a3a978689f/13244_2022_1315_Fig11_HTML.jpg

相似文献

[1]
Enhancing cancer differentiation with synthetic MRI examinations via generative models: a systematic review.

Insights Imaging. 2022-12-12

[2]
Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.

Biomedicines. 2022-1-21

[3]
A survey on deep learning applied to medical images: from simple artificial neural networks to generative models.

Neural Comput Appl. 2023

[4]
Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review.

J Imaging. 2023-4-13

[5]
Deep learning for the harmonization of structural MRI scans: a survey.

Biomed Eng Online. 2024-8-31

[6]
Realistic generation of diffusion-weighted magnetic resonance brain images with deep generative models.

Magn Reson Imaging. 2021-9

[7]
Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.

JMIR Med Inform. 2022-6-29

[8]
Generative artificial intelligence: synthetic datasets in dentistry.

BDJ Open. 2024-3-1

[9]
Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks.

Ophthalmol Sci. 2021-11-16

[10]
Generative artificial intelligence to produce high-fidelity blastocyst-stage embryo images.

Hum Reprod. 2024-6-3

引用本文的文献

[1]
Prediction of Cerebrospinal Fluid (CSF) Pressure with Generative Adversarial Network Synthetic Plasma-CSF Biomarker Pairing.

Neuroinformatics. 2025-7-10

[2]
Data free knowledge distillation with feature synthesis and spatial consistency for image analysis.

Sci Rep. 2024-11-11

[3]
Towards consistency in pediatric brain tumor measurements: Challenges, solutions, and the role of artificial intelligence-based segmentation.

Neuro Oncol. 2024-9-5

[4]
Conditional generative adversarial network driven radiomic prediction of mutation status based on magnetic resonance imaging of breast cancer.

J Transl Med. 2024-3-2

[5]
Evaluating Synthetic Medical Images Using Artificial Intelligence with the GAN Algorithm.

Sensors (Basel). 2023-3-24

本文引用的文献

[1]
Data synthesis and adversarial networks: A review and meta-analysis in cancer imaging.

Med Image Anal. 2023-2

[2]
Deep Radiotranscriptomics of Non-Small Cell Lung Carcinoma for Assessing Molecular and Histology Subtypes with a Data-Driven Analysis.

Diagnostics (Basel). 2021-12-17

[3]
Constrained generative adversarial network ensembles for sharable synthetic medical images.

J Med Imaging (Bellingham). 2021-3

[4]
Improvement of Multiparametric MR Image Segmentation by Augmenting the Data With Generative Adversarial Networks for Glioma Patients.

Front Comput Neurosci. 2021-1-27

[5]
Anatomic and Molecular MR Image Synthesis Using Confidence Guided CNNs.

IEEE Trans Med Imaging. 2021-10

[6]
Variation-Aware Federated Learning With Multi-Source Decentralized Medical Image Data.

IEEE J Biomed Health Inform. 2021-7

[7]
Lesion Mask-Based Simultaneous Synthesis of Anatomic and Molecular MR Images Using a GAN.

Med Image Comput Comput Assist Interv. 2020-10

[8]
Synthesis of Prostate MR Images for Classification Using Capsule Network-Based GAN Model.

Sensors (Basel). 2020-10-9

[9]
Deep Learning for Neuroimaging Segmentation with a Novel Data Augmentation Strategy.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[10]
Advancing COVID-19 differentiation with a robust preprocessing and integration of multi-institutional open-repository computer tomography datasets for deep learning analysis.

Exp Ther Med. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索