Central Facility of Electron Microscopy, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany.
Medical Systems Biology, Ulm University, Albert Einstein-Alee 11, 89081, Ulm, Germany.
Histochem Cell Biol. 2022 Nov;158(5):447-462. doi: 10.1007/s00418-022-02148-3. Epub 2022 Aug 20.
Semantic segmentation of electron microscopy images using deep learning methods is a valuable tool for the detailed analysis of organelles and cell structures. However, these methods require a large amount of labeled ground truth data that is often unavailable. To address this limitation, we present a weighted average ensemble model that can automatically segment biological structures in electron microscopy images when trained with only a small dataset. Thus, we exploit the fact that a combination of diverse base-learners is able to outperform one single segmentation model. Our experiments with seven different biological electron microscopy datasets demonstrate quantitative and qualitative improvements. We show that the Grad-CAM method can be used to interpret and verify the prediction of our model. Compared with a standard U-Net, the performance of our method is superior for all tested datasets. Furthermore, our model leverages a limited number of labeled training data to segment the electron microscopy images and therefore has a high potential for automated biological applications.
使用深度学习方法对电子显微镜图像进行语义分割是对细胞器和细胞结构进行详细分析的一种有价值的工具。然而,这些方法需要大量的标记地面实况数据,而这些数据通常是不可用的。为了解决这个限制,我们提出了一种加权平均集成模型,当仅用一个小数据集进行训练时,该模型可以自动对电子显微镜图像中的生物结构进行分割。因此,我们利用这样一个事实,即多种基础学习者的组合能够胜过单一的分割模型。我们在七个不同的生物电子显微镜数据集上的实验证明了定量和定性的改进。我们表明,可以使用 Grad-CAM 方法来解释和验证我们模型的预测。与标准的 U-Net 相比,我们的方法在所有测试数据集上的性能都更好。此外,我们的模型利用了有限数量的标记训练数据来分割电子显微镜图像,因此在自动化生物应用方面具有很高的潜力。