Suppr超能文献

通过自适应损失函数缩小深度神经网络建模与分割中生物医学决策度量之间的差距。

Closing the Gap Between Deep Neural Network Modeling and Biomedical Decision-Making Metrics in Segmentation via Adaptive Loss Functions.

出版信息

IEEE Trans Med Imaging. 2021 Feb;40(2):585-593. doi: 10.1109/TMI.2020.3031913. Epub 2021 Feb 2.

Abstract

Deep learning is becoming an indispensable tool for various tasks in science and engineering. A critical step in constructing a reliable deep learning model is the selection of a loss function, which measures the discrepancy between the network prediction and the ground truth. While a variety of loss functions have been proposed in the literature, a truly optimal loss function that maximally utilizes the capacity of neural networks for deep learning-based decision-making has yet to be established. Here, we devise a generalized loss function with functional parameters determined adaptively during model training to provide a versatile framework for optimal neural network-based decision-making in small target segmentation. The method is showcased by more accurate detection and segmentation of lung and liver cancer tumors as compared with the current state-of-the-art. The proposed formalism opens new opportunities for numerous practical applications such as disease diagnosis, treatment planning, and prognosis.

摘要

深度学习正在成为科学和工程中各种任务不可或缺的工具。构建可靠的深度学习模型的关键步骤是选择损失函数,该函数用于测量网络预测与真实值之间的差异。虽然文献中已经提出了各种损失函数,但尚未建立一种真正最优的损失函数,该函数可以最大限度地利用神经网络的能力进行基于深度学习的决策。在这里,我们设计了一个具有功能参数的广义损失函数,该函数在模型训练过程中自适应确定,为基于神经网络的小目标分割的最优决策提供了一个通用框架。与当前最先进的方法相比,该方法在肺癌和肝癌肿瘤的更准确检测和分割方面展示了更好的性能。所提出的形式主义为许多实际应用开辟了新的机会,例如疾病诊断、治疗计划和预后。

相似文献

2
Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.基于全卷积神经网络的 FLAIR MRI 脑肿瘤分割。
Comput Methods Programs Biomed. 2019 Jul;176:135-148. doi: 10.1016/j.cmpb.2019.05.006. Epub 2019 May 11.
5
GC-Net: Global context network for medical image segmentation.GC-Net:用于医学图像分割的全局上下文网络。
Comput Methods Programs Biomed. 2020 Jul;190:105121. doi: 10.1016/j.cmpb.2019.105121. Epub 2019 Oct 4.
7
Combo loss: Handling input and output imbalance in multi-organ segmentation.组合损失:处理多器官分割中的输入和输出不平衡。
Comput Med Imaging Graph. 2019 Jul;75:24-33. doi: 10.1016/j.compmedimag.2019.04.005. Epub 2019 May 9.
9
Image generation by GAN and style transfer for agar plate image segmentation.基于 GAN 和风格迁移的琼脂平板图像分割的图像生成。
Comput Methods Programs Biomed. 2020 Feb;184:105268. doi: 10.1016/j.cmpb.2019.105268. Epub 2019 Dec 17.

引用本文的文献

4
Adaptive Region-Specific Loss for Improved Medical Image Segmentation.自适应区域特定损失函数提高医学图像分割。
IEEE Trans Pattern Anal Mach Intell. 2023 Nov;45(11):13408-13421. doi: 10.1109/TPAMI.2023.3289667. Epub 2023 Oct 4.

本文引用的文献

5
Focal Loss for Dense Object Detection.用于密集目标检测的焦散损失
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327. doi: 10.1109/TPAMI.2018.2858826. Epub 2018 Jul 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验