Suppr超能文献

PIMD:一种使用多种特征融合的药物重定位综合方法。

PIMD: An Integrative Approach for Drug Repositioning Using Multiple Characterization Fusion.

机构信息

Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China.

Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China.

出版信息

Genomics Proteomics Bioinformatics. 2020 Oct;18(5):565-581. doi: 10.1016/j.gpb.2018.10.012. Epub 2020 Oct 17.

Abstract

The accumulation of various types of drug informatics data and computational approaches for drug repositioning can accelerate pharmaceutical research and development. However, the integration of multi-dimensional drug data for precision repositioning remains a pressing challenge. Here, we propose a systematic framework named PIMD to predict drug therapeutic properties by integrating multi-dimensional data for drug repositioning. In PIMD, drug similarity networks (DSNs) based on chemical, pharmacological, and clinical data are fused into an integrated DSN (iDSN) composed of many clusters. Rather than simple fusion, PIMD offers a systematic way to annotate clusters. Unexpected drugs within clusters and drug pairs with a high iDSN similarity score are therefore identified to predict novel therapeutic uses. PIMD provides new insights into the universality, individuality, and complementarity of different drug properties by evaluating the contribution of each property data. To test the performance of PIMD, we use chemical, pharmacological, and clinical properties to generate an iDSN. Analyses of the contributions of each drug property indicate that this iDSN was driven by all data types and performs better than other DSNs. Within the top 20 recommended drug pairs, 7 drugs have been reported to be repurposed. The source code for PIMD is available at https://github.com/Sepstar/PIMD/.

摘要

各种类型的药物信息学数据的积累和药物重定位的计算方法可以加速药物的研发。然而,整合多维药物数据进行精确重定位仍然是一个紧迫的挑战。在这里,我们提出了一个名为 PIMD 的系统框架,通过整合药物重定位的多维数据来预测药物治疗特性。在 PIMD 中,基于化学、药理学和临床数据的药物相似性网络(DSN)融合成由多个簇组成的集成 DSN(iDSN)。与简单融合相比,PIMD 为聚类提供了一种系统的注释方法。因此,在聚类中发现意想不到的药物和具有高 iDSN 相似性评分的药物对,以预测新的治疗用途。PIMD 通过评估每种药物特性数据的贡献,为不同药物特性的普遍性、个体性和互补性提供了新的见解。为了测试 PIMD 的性能,我们使用化学、药理学和临床特性来生成 iDSN。对每种药物特性的贡献分析表明,该 iDSN 由所有数据类型驱动,性能优于其他 DSN。在推荐的前 20 对药物中,有 7 种药物已被报道用于重新定位。PIMD 的源代码可在 https://github.com/Sepstar/PIMD/ 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c52/8377380/36b7d285ddf9/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验