Suppr超能文献

碱金属离子与带共轭七元和八元中环的阴离子反芳香族和芳香族烃的离子对的合成与表征。

Synthesis and Characterization of Ion Pairs between Alkaline Metal Ions and Anionic Anti-Aromatic and Aromatic Hydrocarbons with π-Conjugated Central Seven- and Eight-Membered Rings.

机构信息

Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.

Department of Chemistry & Biochemistry, 1306 E. University Blvd., Tucson, AZ 85719, USA.

出版信息

Molecules. 2020 Oct 15;25(20):4742. doi: 10.3390/molecules25204742.

Abstract

The synthesis, isolation and full characterization of ion pairs between alkaline metal ions (Li, Na, K) and mono-anions and dianions obtained from -dibenzo[,]cycloheptenyl (CH = trop) is reported. According to Nuclear Magnetic Resonance (NMR) spectroscopy, single crystal X-ray analysis and Density Functional Theory (DFT) calculations, the trop and trop anions show anti-aromatic properties which are dependent on the counter cation M and solvent molecules serving as co-ligands. For comparison, the disodium and dipotassium salt of the dianion of dibenzo[]cyclooctatetraene (CH = dbcot) were prepared, which show classical aromatic character. A d-Rh(I) complex of trop was prepared and the structure shows a distortion of the CH ligand into a conjugated 10π -benzo pentadienide unit-to which the Rh(I) center is coordinated-and an aromatic 6π electron benzo group which is non-coordinated. Electron transfer reactions between neutral and anionic trop and dbcot species show that the anti-aromatic compounds obtained from trop are significantly stronger reductants.

摘要

报道了从 -二苯并[,]环庚烯(CH = trop)中获得的碱金属离子(Li、Na、K)与一价和二价阴离子形成的离子对的合成、分离和全谱学表征。根据核磁共振(NMR)光谱、单晶 X 射线分析和密度泛函理论(DFT)计算,trop 和 trop 阴离子显示反芳香性质,这取决于抗衡阳离子 M 和作为共配体的溶剂分子。作为比较,制备了二阴离子的二钠盐和二钾盐,它们显示出典型的芳香性。制备了 trop 的 d-Rh(I)配合物,结构显示 CH 配体扭曲成共轭的 10π-苯并戊二烯化物单元,Rh(I)中心与之配位,以及非配位的芳香 6π 电子苯基团。中性和阴离子 trop 和 dbcot 物种之间的电子转移反应表明,从 trop 获得的反芳香化合物是明显更强的还原剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/7594067/d686250fafd5/molecules-25-04742-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验