Feyissa Biruk A, Renaud Justin, Nasrollahi Vida, Kohalmi Susanne E, Hannoufa Abdelali
Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A3K7, Canada.
Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada.
BMC Genomics. 2020 Oct 19;21(1):721. doi: 10.1186/s12864-020-07118-4.
We previously reported on the interplay between miR156/SPL13 and WD40-1/DFR to improve response to drought stress in alfalfa (Medicago sativa L.). Here we aimed to investigate whether the role of miR156/SPL13 module in drought response is tissue-specific, and to identify SPL13-interacting proteins. We analyzed the global transcript profiles of leaf, stem, and root tissues of one-month old RNAi-silenced SPL13 (SPL13RNAi) alfalfa plants exposed to drought stress and conducted protein-protein interaction analysis to identify SPL13 interacting partners.
Transcript analysis combined with weighted gene co-expression network analysis showed tissue and genotype-specific gene expression patterns. Moreover, pathway analysis of stem-derived differentially expressed genes (DEG) revealed upregulation of genes associated with stress mitigating primary and specialized metabolites, whereas genes associated with photosynthesis light reactions were silenced in SPL13RNAi plants. Leaf-derived DEG were attributed to enhanced light reactions, largely photosystem I, II, and electron transport chains, while roots of SPL13RNAi plants upregulated transcripts associated with metal ion transport, carbohydrate, and primary metabolism. Using immunoprecipitation combined with mass spectrometry (IPMS) we showed that SPL13 interacts with proteins involved in photosynthesis, specialized metabolite biosynthesis, and stress tolerance.
We conclude that the miR156/SPL13 module mitigates drought stress in alfalfa by regulating molecular and physiological processes in a tissue-dependent manner.
我们之前报道了miR156/SPL13与WD40-1/DFR之间的相互作用,以改善苜蓿(Medicago sativa L.)对干旱胁迫的响应。在此,我们旨在研究miR156/SPL13模块在干旱响应中的作用是否具有组织特异性,并鉴定与SPL13相互作用的蛋白质。我们分析了暴露于干旱胁迫下的1月龄RNA干扰沉默SPL13(SPL13RNAi)苜蓿植株的叶、茎和根组织的全局转录谱,并进行了蛋白质-蛋白质相互作用分析,以鉴定与SPL13相互作用的伙伴。
转录分析结合加权基因共表达网络分析显示了组织和基因型特异性的基因表达模式。此外,对茎来源的差异表达基因(DEG)的通路分析表明,与减轻胁迫的初级和特殊代谢产物相关的基因上调,而与光合作用光反应相关的基因在SPL13RNAi植株中沉默。叶来源的DEG归因于增强的光反应,主要是光系统I、II和电子传递链,而SPL13RNAi植株的根上调了与金属离子转运、碳水化合物和初级代谢相关的转录本。使用免疫沉淀结合质谱(IPMS),我们表明SPL13与参与光合作用、特殊代谢产物生物合成和胁迫耐受性的蛋白质相互作用。
我们得出结论,miR156/SPL13模块通过以组织依赖的方式调节分子和生理过程来减轻苜蓿的干旱胁迫。