NanoElectronics Group, MESA+ Institute for Nanotechnology, and Center for Brain-Inspired Nano Systems (BRAINS), University of Twente, Enschede, The Netherlands.
Programmable Nanosystems and Formal Methods and Tools, MESA+ Institute for Nanotechnology, DSI Digital Society Institute, and Center for Brain-Inspired Nano Systems (BRAINS), University of Twente, Enschede, The Netherlands.
Nat Nanotechnol. 2020 Dec;15(12):992-998. doi: 10.1038/s41565-020-00779-y. Epub 2020 Oct 19.
Many nanoscale devices require precise optimization to function. Tuning them to the desired operation regime becomes increasingly difficult and time-consuming when the number of terminals and couplings grows. Imperfections and device-to-device variations hinder optimization that uses physics-based models. Deep neural networks (DNNs) can model various complex physical phenomena but, so far, are mainly used as predictive tools. Here, we propose a generic deep-learning approach to efficiently optimize complex, multi-terminal nanoelectronic devices for desired functionality. We demonstrate our approach for realizing functionality in a disordered network of dopant atoms in silicon. We model the input-output characteristics of the device with a DNN, and subsequently optimize control parameters in the DNN model through gradient descent to realize various classification tasks. When the corresponding control settings are applied to the physical device, the resulting functionality is as predicted by the DNN model. We expect our approach to contribute to fast, in situ optimization of complex (quantum) nanoelectronic devices.
许多纳米尺度的器件需要精确的优化才能正常工作。当终端和耦合的数量增加时,调整它们以适应所需的工作模式变得越来越困难和耗时。不完美和器件之间的差异会阻碍基于物理模型的优化。深度神经网络(DNN)可以模拟各种复杂的物理现象,但到目前为止,它们主要被用作预测工具。在这里,我们提出了一种通用的深度学习方法,可以有效地优化具有所需功能的复杂多端纳米电子器件。我们在硅中掺杂原子的无序网络中实现了这一功能。我们使用 DNN 对器件的输入输出特性进行建模,然后通过梯度下降在 DNN 模型中优化控制参数,以实现各种分类任务。当将相应的控制设置应用于物理器件时,所得到的功能与 DNN 模型的预测相符。我们期望我们的方法能够促进复杂(量子)纳米电子器件的快速、原位优化。