Ocaya Richard O, Akinyelu Andronicus A, Al-Sehemi Abdullah G, Dere Ayşegul, Al-Ghamdi Ahmed A, Yakuphanoğlu Fahrettin
Department of Physics, University of the Free State, P. Bag X13, Phuthaditjhaba, 9866, South Africa.
Department of Computer Science and Informatics, University of the Free State, P. Bag X13, Phuthaditjhaba, 9866, South Africa.
Sci Rep. 2023 Aug 26;13(1):13990. doi: 10.1038/s41598-023-41111-7.
We propose ANN-based models to analyze and extract the internal parameters of a Schottky photodiode (SPD) without presenting them with any knowledge of the highly nonlinear thermionic emission (TE) expression of the device current. We train, evaluate and demonstrate the ML models on thirty-six private datasets from three previously published devices, which denote current responses under illumination and ambient temperature of graphene oxide (GO) doped p-Si Schottky barrier diodes (SBDs). The GO doping levels are 0%, 1%, 3%, 5%, and 10%. The illumination ranged from dark (0 mW/cm) to 30 mW/cm. The predictions are then made completely at the intensity of 60 mW/cm. For each diode, some values of the barrier height ([Formula: see text]), ideality factor (n), and series resistance ([Formula: see text]) independently calculated using the Cheung-Cheung method were included in the training dataset. The predictions are done at unspecified intensities on the model development data at 80 and 100 mW/cm, and on external data at 5% and 20% GO doping which were not part of the development dataset. The ANN achieved a mean square error and mean absolute error score below 0.003 across all datasets. This demonstrates the effective learning capabilities of the ANN models in accurately capturing the photo responses of the photodiodes and accurately predicting the internal parameters of the Schottky Barrier Diodes (SBDs), all without relying on an inherent understanding of the thermionic emission (TE) equation for SBDs. The ANN models achieved high accuracy in this process. The proposed ML models can significantly reduce analysis time in device development cycles and can be applied to other datasets in various fields.
我们提出基于人工神经网络(ANN)的模型,用于分析和提取肖特基光电二极管(SPD)的内部参数,而无需向其提供任何有关该器件电流高度非线性热电子发射(TE)表达式的知识。我们在来自三个先前发表的器件的36个私有数据集上训练、评估和演示了机器学习(ML)模型,这些数据集表示氧化石墨烯(GO)掺杂的p型硅肖特基势垒二极管(SBD)在光照和环境温度下的电流响应。GO的掺杂水平分别为0%、1%、3%、5%和10%。光照强度范围从暗(0 mW/cm²)到30 mW/cm²。然后在60 mW/cm²的强度下进行完全预测。对于每个二极管,使用张氏方法独立计算的势垒高度([公式:见原文])、理想因子(n)和串联电阻([公式:见原文])的一些值被纳入训练数据集。在80和100 mW/cm²的模型开发数据以及未包含在开发数据集中的5%和20% GO掺杂的外部数据上,在未指定强度下进行预测。ANN在所有数据集上均实现了低于0.003的均方误差和平均绝对误差得分。这证明了ANN模型在准确捕获光电二极管的光响应以及准确预测肖特基势垒二极管(SBD)的内部参数方面具有有效的学习能力,且所有这些都无需依赖对SBD热电子发射(TE)方程的内在理解。在此过程中,ANN模型实现了高精度。所提出的ML模型可以显著减少器件开发周期中的分析时间,并且可以应用于各个领域的其他数据集。