Suppr超能文献

用于优化等离子体配对纳米结构光学参数的人工神经网络建模

Artificial Neural Network Modelling for Optimizing the Optical Parameters of Plasmonic Paired Nanostructures.

作者信息

Verma Sneha, Chugh Sunny, Ghosh Souvik, Rahman B M Azizur

机构信息

School of Mathematics, Computer Science and Engineering, City University of London, London EC1V 0HB, UK.

Department of Electronics and Electrical Engineering, University College London, London EC1V 0HB, UK.

出版信息

Nanomaterials (Basel). 2022 Jan 4;12(1):170. doi: 10.3390/nano12010170.

Abstract

The Artificial Neural Network (ANN) has become an attractive approach in Machine Learning (ML) to analyze a complex data-driven problem. Due to its time efficient findings, it has became popular in many scientific fields such as physics, optics, and material science. This paper presents a new approach to design and optimize the electromagnetic plasmonic nanostructures using a computationally efficient method based on the ANN. In this work, the nanostructures have been simulated by using a Finite Element Method (FEM), then Artificial Intelligence (AI) is used for making predictions of associated sensitivity , Full Width Half Maximum (FWHM), Figure of Merit , and Plasmonic Wavelength for different paired nanostructures. At first, the computational model is developed by using a Finite Element Method (FEM) to prepare the dataset. The input parameters were considered as the Major axis, , the Minor axis, , and the separation gap, , which have been used to calculate the corresponding sensitivity (nm/RIU), FWHM (nm), FOM, and plasmonic wavelength (nm) to prepare the dataset. Secondly, the neural network has been designed where the number of hidden layers and neurons were optimized as part of a comprehensive analysis to improve the efficiency of ML model. After successfully optimizing the neural network, this model is used to make predictions for specific inputs and its corresponding outputs. This article also compares the error between the predicted and simulated results. This approach outperforms the direct numerical simulation methods for predicting output for various input device parameters.

摘要

人工神经网络(ANN)已成为机器学习(ML)中一种颇具吸引力的方法,用于分析复杂的数据驱动问题。由于其在时间效率方面的研究成果,它在许多科学领域,如物理、光学和材料科学中都变得很受欢迎。本文提出了一种基于人工神经网络的计算高效方法来设计和优化电磁等离子体纳米结构。在这项工作中,使用有限元方法(FEM)对纳米结构进行了模拟,然后利用人工智能(AI)对不同配对纳米结构的相关灵敏度、半高宽(FWHM)、品质因数和等离子体波长进行预测。首先,使用有限元方法(FEM)开发计算模型以准备数据集。输入参数被视为长轴、短轴和分离间隙,这些参数已被用于计算相应的灵敏度(纳米/折射率单位)、半高宽(纳米)、品质因数和等离子体波长(纳米),以准备数据集。其次,设计了神经网络,其中对隐藏层和神经元的数量进行了优化,作为综合分析的一部分,以提高机器学习模型的效率。在成功优化神经网络后,该模型用于对特定输入及其相应输出进行预测。本文还比较了预测结果和模拟结果之间的误差。这种方法在预测各种输入设备参数的输出方面优于直接数值模拟方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/834b/8746605/b736d07c7725/nanomaterials-12-00170-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验