Suppr超能文献

植物固醇生产酵母平台的工程化用于下游生物合成途径的功能重建。

Engineering of Phytosterol-Producing Yeast Platforms for Functional Reconstitution of Downstream Biosynthetic Pathways.

机构信息

Department of Chemical and Environmental Engineering, University of California, 900 University Avenue, Bourns Hall, Suite A220, Riverside, California 92521, United States.

Martin Luther King High School, 9301 Wood Road, Riverside, California 92508, United States.

出版信息

ACS Synth Biol. 2020 Nov 20;9(11):3157-3170. doi: 10.1021/acssynbio.0c00417. Epub 2020 Oct 21.

Abstract

As essential structural molecules for plant plasma membranes, phytosterols are key intermediates for the synthesis of many downstream specialized metabolites of pharmaceutical or agricultural significance, such as brassinosteroids and withanolides. has been widely used as an alternative producer for plant secondary metabolites. Establishment of heterologous sterol pathways in yeast, however, has been challenging due to either low efficiency or structural diversity, likely a result of crosstalk between the heterologous phytosterol and the endogenous ergosterol biosynthesis. For example, in this study, we engineered campesterol production in yeast using plant enzymes; although we were able to enhance the titer of campesterol to ∼40 mg/L by upregulating the mevalonate pathway, no conversion to downstream products was detected upon the introduction of downstream plant enzymes. Further investigations uncovered two interesting observations about sterol engineering in yeast. First, many heterologous sterols tend to be efficiently and intensively esterified in yeast, which drastically impedes the function of downstream enzymes. Second, yeast can overcome the growth deficiency caused by altered sterol metabolism through repeated culture. By employing metabolic engineering, strain evolution, fermentation engineering, and pathway reconstitution, we were able to reconstruct the multienzyme pathways for the synthesis of a set of phytosterols: campesterol (∼7 mg/L), β-sitosterol (∼2 mg/L), 22-hydroxycampesterol (∼1 mg/L), and 22-hydroxycampest-4-en-3-one (∼4 mg/L). This work identified and addressed some of the technical bottlenecks in phytosterol-derived pathway reconstitution in the baker's yeast and opens up opportunities for efficient bioproduction and metabolic pathway elucidation of this group of phytochemicals.

摘要

作为植物质膜的必需结构分子,植物甾醇是许多具有药用或农业意义的下游特殊代谢物合成的关键中间体,如油菜素内酯和乌索烷类化合物。 已被广泛用作植物次生代谢产物的替代生产菌。然而,由于效率低或结构多样性,在酵母中建立异源甾醇途径一直具有挑战性,这可能是由于异源植物甾醇和内源性麦角固醇生物合成之间的串扰。例如,在这项研究中,我们使用植物酶在酵母中工程化产生菜油甾醇;尽管我们能够通过上调甲羟戊酸途径将菜油甾醇的浓度提高到约 40mg/L,但在引入下游植物酶后没有检测到向下游产物的转化。进一步的研究揭示了酵母中甾醇工程的两个有趣观察结果。首先,许多异源甾醇在酵母中往往会被有效地、高度酯化,这极大地阻碍了下游酶的功能。其次,酵母可以通过反复培养克服由改变甾醇代谢引起的生长缺陷。通过采用代谢工程、菌株进化、发酵工程和途径重建,我们能够重建一组植物甾醇的多酶合成途径:菜油甾醇(约 7mg/L)、β-谷甾醇(约 2mg/L)、22-羟基菜油甾醇(约 1mg/L)和 22-羟基菜甾-4-烯-3-酮(约 4mg/L)。这项工作确定并解决了在面包酵母中重建植物甾醇衍生途径中的一些技术瓶颈,为这组植物化学物质的高效生物生产和代谢途径阐明开辟了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验