Miller Lynn C, Shaikh Sonia Jawaid, Jeong David C, Wang Liyuan, Gillig Traci K, Godoy Carlos G, Appleby Paul R, Corsbie-Massay Charisse L, Marsella Stacy, Christensen John L, Read Stephen J
University of Southern California.
Washington State University.
Psychol Inq. 2019;30(4):173-202. doi: 10.1080/1047840x.2019.1693866. Epub 2020 Jan 4.
Causal inference and generalizability matter. Historically, systematic designs emphasize causal inference, while representative designs focus on generalizability. Here, we suggest a transformative synthesis - - concurrently enhancing both causal inference and "built-in" generalizability by leveraging today's intelligent agent, virtual environments, and other technologies. In SRD, a "default control group" (DCG) can be created in a virtual environment by from real-world situations. Experimental groups can be built with systematic manipulations onto the DCG base. Applying (e.g., random assignment to DCG versus experimental groups) in SRD affords valid causal inferences. After explicating the proposed SRD synthesis, we delineate how the approach concurrently advances generalizability and robustness, cause-effect inference and precision science, a computationally-enabled cumulative psychological science supporting both "bigger theory" and concrete implementations grappling with tough questions (e.g., what is context?) and affording rapidly-scalable interventions for real-world problems.
因果推断和可推广性很重要。从历史上看,系统性设计强调因果推断,而代表性设计则侧重于可推广性。在此,我们提出一种变革性的综合方法——通过利用当今的智能代理、虚拟环境和其他技术,同时增强因果推断和“内在”可推广性。在系统性随机设计(SRD)中,可以在虚拟环境中根据现实世界的情况创建一个“默认对照组”(DCG)。实验组可以在DCG的基础上通过系统性操作构建而成。在SRD中应用随机化(例如,随机分配到DCG组或实验组)可提供有效的因果推断。在阐述了所提出的SRD综合方法之后,我们描述了该方法如何同时推进可推广性和稳健性、因果效应推断和精准科学,一种支持“更宏大理论”和解决棘手问题(例如,什么是情境?)的具体实施并为现实世界问题提供快速可扩展干预措施的计算支持的累积性心理科学。