Suppr超能文献

1 型糖尿病患者的血糖浓度控制:一种多模型策略。

Blood glucose concentration control for type 1 diabetic patients: a multiple-model strategy.

机构信息

Department of Electrical Engineering, University of Kurdistan, Sanandaj, Iran.

出版信息

IET Syst Biol. 2020 Feb;14(1):24-30. doi: 10.1049/iet-syb.2018.5049.

Abstract

In this study, a multiple-model strategy is evaluated as an alternative closed-loop method for subcutaneous insulin delivery in type 1 diabetes. Non-linearities of the glucose-insulin regulatory system are considered by modelling the system around five different operating points. After conducting some identification experiments in the UVA/Padova metabolic simulator (accepted simulator by the US Food and Drug Administration (FDA)), five transfer functions are obtained for these operating points. Paying attention to some physiological facts, the control objectives such as the required settling time and permissible bounds of overshoots and undershoots are determined for any transfer functions. Then, five PID controllers are tuned to achieve these objectives and a bank of controllers is constructed. To cope with difficulties of the presence of delays in subcutaneous blood glucose (BG) measuring and in administration of insulin, a glucose-dependent setpoint is considered as the desired trajectory for the BG concentration. The performance of the obtained closed-loop glucose-insulin regulatory system is investigated on the in silico adult cohort of the UVA/Padova metabolic simulator. The obtained results show that the proposed multiple-model strategy leads to a closed-loop mechanism with limited hyperglycemia and no severe hypoglycemia.

摘要

在这项研究中,评估了一种多模型策略,作为 1 型糖尿病患者皮下胰岛素输送的闭环方法的替代方法。通过围绕五个不同的工作点对葡萄糖-胰岛素调节系统的非线性进行建模,考虑了该系统的非线性。在 UVA/Padova 代谢模拟器(美国食品和药物管理局 (FDA) 认可的模拟器)中进行了一些识别实验后,为这些工作点获得了五个传递函数。根据一些生理事实,为任何传递函数确定了控制目标,例如所需的稳定时间以及过冲和下冲的允许边界。然后,调整了五个 PID 控制器以实现这些目标,并构建了一个控制器库。为了应对皮下血糖 (BG) 测量和胰岛素给药中存在延迟的困难,将葡萄糖依赖性设定点视为 BG 浓度的期望轨迹。在 UVA/Padova 代谢模拟器的虚拟成人队列上研究了所获得的闭环葡萄糖-胰岛素调节系统的性能。得到的结果表明,所提出的多模型策略导致具有有限高血糖且无严重低血糖的闭环机制。

相似文献

1
Blood glucose concentration control for type 1 diabetic patients: a multiple-model strategy.
IET Syst Biol. 2020 Feb;14(1):24-30. doi: 10.1049/iet-syb.2018.5049.
2
Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.
3
Switched LPV Glucose Control in Type 1 Diabetes.
IEEE Trans Biomed Eng. 2016 Jun;63(6):1192-1200. doi: 10.1109/TBME.2015.2487043. Epub 2015 Oct 5.
5
Type-1 Diabetes Patient Decision Simulator for In Silico Testing Safety and Effectiveness of Insulin Treatments.
IEEE Trans Biomed Eng. 2018 Jun;65(6):1281-1290. doi: 10.1109/TBME.2017.2746340. Epub 2017 Aug 29.
6
Effect of insulin feedback on closed-loop glucose control: a crossover study.
J Diabetes Sci Technol. 2012 Sep 1;6(5):1123-30. doi: 10.1177/193229681200600517.
7
The university of Virginia/Padova type 1 diabetes simulator matches the glucose traces of a clinical trial.
Diabetes Technol Ther. 2014 Jul;16(7):428-34. doi: 10.1089/dia.2013.0377. Epub 2014 Feb 26.
8
Automatic Artificial Pancreas Systems Using an Intelligent Multiple-Model PID Strategy.
IEEE J Biomed Health Inform. 2022 Apr;26(4):1708-1717. doi: 10.1109/JBHI.2021.3116376. Epub 2022 Apr 14.
9
The effect of insulin feedback on closed loop glucose control.
J Clin Endocrinol Metab. 2011 May;96(5):1402-8. doi: 10.1210/jc.2010-2578. Epub 2011 Mar 2.
10
Towards the Integration of an Islet-Based Biosensor in Closed-Loop Therapies for Patients With Type 1 Diabetes.
Front Endocrinol (Lausanne). 2022 Apr 22;13:795225. doi: 10.3389/fendo.2022.795225. eCollection 2022.

引用本文的文献

1
Developing the UVA/Padova Type 1 Diabetes Simulator: Modeling, Validation, Refinements, and Utility.
J Diabetes Sci Technol. 2023 Nov;17(6):1493-1505. doi: 10.1177/19322968231195081. Epub 2023 Sep 25.
2
Intelligent automated drug administration and therapy: future of healthcare.
Drug Deliv Transl Res. 2021 Oct;11(5):1878-1902. doi: 10.1007/s13346-020-00876-4. Epub 2021 Jan 14.
3
Sliding mode control for a fractional-order non-linear glucose-insulin system.
IET Syst Biol. 2020 Oct;14(5):223-229. doi: 10.1049/iet-syb.2020.0030.

本文引用的文献

1
Blood glucose concentration control for type 1 diabetic patients: a non-linear suboptimal approach.
IET Syst Biol. 2017 Aug;11(4):119-125. doi: 10.1049/iet-syb.2016.0044.
2
Mathematical investigation of diabetically impaired ultradian oscillations in the glucose-insulin regulation.
J Theor Biol. 2017 Apr 7;418:66-76. doi: 10.1016/j.jtbi.2017.01.039. Epub 2017 Jan 24.
3
Personalized glucose-insulin model based on signal analysis.
J Theor Biol. 2017 Apr 21;419:333-342. doi: 10.1016/j.jtbi.2016.12.018. Epub 2016 Dec 28.
4
Robust PBPK/PD-Based Model Predictive Control of Blood Glucose.
IEEE Trans Biomed Eng. 2016 Jul;63(7):1492-504. doi: 10.1109/TBME.2015.2497273. Epub 2015 Nov 2.
5
Switched LPV Glucose Control in Type 1 Diabetes.
IEEE Trans Biomed Eng. 2016 Jun;63(6):1192-1200. doi: 10.1109/TBME.2015.2487043. Epub 2015 Oct 5.
6
Reducing risks in type 1 diabetes using H∞ control.
IEEE Trans Biomed Eng. 2014 Dec;61(12):2939-47. doi: 10.1109/TBME.2014.2336772. Epub 2014 Jul 9.
7
First use of model predictive control in outpatient wearable artificial pancreas.
Diabetes Care. 2014;37(5):1212-5. doi: 10.2337/dc13-1631.
8
Artificial pancreas: model predictive control design from clinical experience.
J Diabetes Sci Technol. 2013 Nov 1;7(6):1470-83. doi: 10.1177/193229681300700607.
9
Diabetes: Models, Signals, and Control.
IEEE Rev Biomed Eng. 2009 Jan 1;2:54-96. doi: 10.1109/RBME.2009.2036073.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验