Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California.
Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California.
Biophys J. 2020 Nov 17;119(10):2019-2028. doi: 10.1016/j.bpj.2020.10.010. Epub 2020 Oct 20.
Huntington's disease is a heritable neurodegenerative disease that is caused by a CAG expansion in the first exon of the huntingtin gene. This expansion results in an elongated polyglutamine domain that increases the propensity of huntingtin exon-1 to form cross-β fibrils. Although the polyglutamine domain is important for fibril formation, the dynamic, C-terminal proline-rich domain (PRD) of huntingtin exon-1 makes up a large fraction of the fibril surface. Because potential fibril toxicity has to be mediated by interactions of the fibril surface with its cellular environment, we wanted to model the conformational space adopted by the PRD. We ran 800-ns long molecular dynamics simulations of the PRD using an explicit water model optimized for intrinsically disordered proteins. These simulations accurately predicted our previous solid-state NMR data and newly acquired electron paramagnetic resonance double electron-electron resonance distances, lending confidence in their accuracy. The simulations show that the PRD generally forms an imperfect polyproline (polyP) II helical conformation. The two polyP regions within the PRD stay in a polyP II helix for most of the simulation, whereas occasional kinks in the proline-rich linker region cause an overall bend in the PRD structure. The dihedral angles of the glycine at the end of the second polyP region are very variable, effectively decoupling the highly dynamic 12 C-terminal residues from the rest of the PRD.
亨廷顿病是一种遗传性神经退行性疾病,由亨廷顿基因第一外显子中的 CAG 扩展引起。这种扩展导致延伸的多聚谷氨酰胺结构域增加了亨廷顿外显子-1形成交叉-β纤维的倾向。虽然多聚谷氨酰胺结构域对纤维形成很重要,但亨廷顿外显子-1的动态、脯氨酸丰富的 C 末端结构域(PRD)构成了纤维表面的很大一部分。由于潜在的纤维毒性必须通过纤维表面与细胞环境的相互作用来介导,我们希望模拟 PRD 采用的构象空间。我们使用优化用于固有无序蛋白的显式水模型对 PRD 进行了 800ns 长的分子动力学模拟。这些模拟准确地预测了我们之前的固态 NMR 数据和新获得的电子顺磁共振双电子电子共振距离,这增加了它们准确性的可信度。模拟表明,PRD 通常形成不完全的聚脯氨酸(polyP)II 螺旋构象。PRD 内的两个 polyP 区域在模拟过程的大部分时间内保持在 polyP II 螺旋中,而脯氨酸丰富的连接区偶尔出现的扭曲导致 PRD 结构的整体弯曲。第二个 polyP 区域末端甘氨酸的二面角非常多变,有效地将高度动态的 12 个 C 末端残基与 PRD 的其余部分解耦。