Université Cheikh Anta Diop de Dakar UCAD, Ecole Supérieure Polytechnique, BP 15915, Dakar Fann, Senegal; IRD, Sorbonne Université, UMMISCO, F-93143, Bondy, France.
IRD, Univ Brest, CNRS, Ifremer, LEMAR, Plouzané, France; ISRA, CRODT, Pole de recherche de Hann, BP2241, Dakar, Senegal.
ISA Trans. 2021 Mar;109:113-125. doi: 10.1016/j.isatra.2020.09.018. Epub 2020 Oct 3.
Quantitative and qualitative analysis of acoustic backscattered signals from the seabed bottom to the sea surface is used worldwide for fish stocks assessment and marine ecosystem monitoring. Huge amounts of raw data are collected yet require tedious expert labeling. This paper focuses on a case study where the ground truth labels are non-obvious: echograms labeling, which is time-consuming and critical for the quality of fisheries and ecological analysis. We investigate how these tasks can benefit from supervised learning algorithms and demonstrate that convolutional neural networks trained with non-stationary datasets can be used to stress parts of a new dataset needing human expert correction. Further development of this approach paves the way toward a standardization of the labeling process in fisheries acoustics and is a good case study for non-obvious data labeling processes.
对海底到海面的反向散射声信号进行定量和定性分析,已被广泛应用于鱼类资源评估和海洋生态系统监测。目前已采集到大量的原始数据,但仍需要专家进行繁琐的人工标注。本文以一个真实案例为研究对象,该案例中的标注结果不明显:声图标注,这是渔业和生态分析质量的关键,且十分耗时。我们研究了这些任务如何受益于监督学习算法,并证明了可以使用基于非平稳数据集训练的卷积神经网络来突出新数据集需要人工专家纠正的部分。进一步开发该方法为渔业声学中的标注过程标准化铺平了道路,是不明显数据标注过程的一个很好的案例研究。