Suppr超能文献

环境变量和机器学习模型预测中东海域鲸目动物的丰度。

Environmental variables and machine learning models to predict cetacean abundance in the Central-eastern Mediterranean Sea.

机构信息

Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, via Amendola 122/D-I, 70126, Bari, Italy.

Ocean Predictions and Applications Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce, Italy.

出版信息

Sci Rep. 2023 Feb 14;13(1):2600. doi: 10.1038/s41598-023-29681-y.

Abstract

Although the Mediterranean Sea is a crucial hotspot in marine biodiversity, it has been threatened by numerous anthropogenic pressures. As flagship species, Cetaceans are exposed to those anthropogenic impacts and global changes. Assessing their conservation status becomes strategic to set effective management plans. The aim of this paper is to understand the habitat requirements of cetaceans, exploiting the advantages of a machine-learning framework. To this end, 28 physical and biogeochemical variables were identified as environmental predictors related to the abundance of three odontocete species in the Northern Ionian Sea (Central-eastern Mediterranean Sea). In fact, habitat models were built using sighting data collected for striped dolphins Stenella coeruleoalba, common bottlenose dolphins Tursiops truncatus, and Risso's dolphins Grampus griseus between July 2009 and October 2021. Random Forest was a suitable machine learning algorithm for the cetacean abundance estimation. Nitrate, phytoplankton carbon biomass, temperature, and salinity were the most common influential predictors, followed by latitude, 3D-chlorophyll and density. The habitat models proposed here were validated using sighting data acquired during 2022 in the study area, confirming the good performance of the strategy. This study provides valuable information to support management decisions and conservation measures in the EU marine spatial planning context.

摘要

尽管地中海是海洋生物多样性的关键热点地区,但它也受到了众多人为压力的威胁。作为旗舰物种,鲸目动物暴露于这些人为影响和全球变化之下。评估它们的保护状况对于制定有效的管理计划至关重要。本文旨在利用机器学习框架的优势,了解鲸目动物的栖息地需求。为此,确定了 28 个物理和生物地球化学变量作为与北爱奥尼亚海(地中海中东部)三种齿鲸物种丰度相关的环境预测因子。事实上,使用 2009 年 7 月至 2021 年 10 月期间收集的条纹海豚 Stenella coeruleoalba、宽吻海豚 Tursiops truncatus 和灰海豚 Grampus griseus 的观测数据构建了栖息地模型。随机森林是一种适合鲸目动物丰度估计的机器学习算法。硝酸盐、浮游植物碳生物量、温度和盐度是最常见的影响因素,其次是纬度、3D 叶绿素和密度。在研究区域内 2022 年获得的观测数据验证了所提出的栖息地模型,证实了该策略的良好性能。本研究为支持欧盟海洋空间规划背景下的管理决策和保护措施提供了有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1e/9929343/b2fa45446411/41598_2023_29681_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验