Bazzi Salah, Sternad Dagmar
Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA.
Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA.
Adv Robot. 2020;34(17):1137-1155. doi: 10.1080/01691864.2020.1777198. Epub 2020 Jun 16.
Manipulation of objects with underactuated dynamics remains a challenge for robots. In contrast, humans excel at 'tool use' and more insight into human control strategies may inform robotic control architectures. We examined human control of objects that exhibit complex - underactuated, nonlinear, and potentially chaotic dynamics, such as transporting a cup of coffee. Simple control strategies appropriate for unconstrained movements, such as maximizing smoothness, fail as interaction forces have to be compensated or preempted. However, predictive control based on internal models appears daunting when the objects have nonlinear and unpredictable dynamics. We hypothesized that humans learn strategies that make these interactions predictable. Using a virtual environment subjects interacted with a virtual cup and rolling ball using a robotic visual and haptic interface. Two different metrics quantified predictability: stability or contraction, and mutual information between controller and object. In point-to-point displacements subjects exploited the contracting regions of the object dynamics to safely navigate perturbations. Control contraction metrics showed that subjects used a controller that exponentially stabilized trajectories. During continuous cup-and-ball displacements subjects developed predictable solutions sacrificing smoothness and energy efficiency. These results may stimulate control strategies for dexterous robotic manipulators and human-robot interaction.
对具有欠驱动动力学的物体进行操作对机器人来说仍然是一项挑战。相比之下,人类擅长“工具使用”,对人类控制策略的更多了解可能会为机器人控制架构提供参考。我们研究了人类对具有复杂的欠驱动、非线性和潜在混沌动力学的物体的控制,比如端着一杯咖啡。适用于无约束运动的简单控制策略,如最大化平滑度,在必须补偿或预先应对相互作用力时就会失效。然而,当物体具有非线性和不可预测的动力学时,基于内部模型的预测控制似乎令人生畏。我们推测人类会学习使这些相互作用具有可预测性的策略。使用虚拟环境,受试者通过机器人视觉和触觉界面与虚拟杯子和滚动球进行交互。两种不同的指标量化了可预测性:稳定性或收缩性,以及控制器与物体之间的互信息。在点对点位移中,受试者利用物体动力学的收缩区域安全地应对扰动。控制收缩指标表明,受试者使用了一种能使轨迹指数稳定的控制器。在杯子和球的连续位移过程中,受试者牺牲了平滑度和能量效率来开发可预测的解决方案。这些结果可能会激发用于灵巧机器人操纵器和人机交互的控制策略。