Suppr超能文献

人类大脑活动的自相似性和多重分形性:基于小波的无标度大脑动力学分析。

Self-similarity and multifractality in human brain activity: A wavelet-based analysis of scale-free brain dynamics.

机构信息

CEA/DRF/Joliot, NeuroSpin, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France; INRIA, Parietal Team, Université Paris-Saclay, France.

Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France.

出版信息

J Neurosci Methods. 2018 Nov 1;309:175-187. doi: 10.1016/j.jneumeth.2018.09.010. Epub 2018 Sep 10.

Abstract

BACKGROUND

The temporal structure of macroscopic brain activity displays both oscillatory and scale-free dynamics. While the functional relevance of neural oscillations has been largely investigated, both the nature and the role of scale-free dynamics in brain processing have been disputed.

NEW METHOD

Here, we offer a novel method to rigorously enrich the characterization of scale-free brain activity using a robust wavelet-based assessment of self-similarity and multifractality. For this, we analyzed human brain activity recorded with magnetoencephalography (MEG) while participants were at rest or performing a visual motion discrimination task.

RESULTS

First, we report consistent infraslow (from 0.1 to 1.5 Hz) scale-free dynamics (i.e., self-similarity and multifractality) in resting-state and task data. Second, we observed a fronto-occipital gradient of self-similarity reminiscent of the known hierarchy of temporal scales from sensory to higher-order cortices; the anatomical gradient was more pronounced in task than in rest. Third, we observed a significant increase of multifractality during task as compared to rest. Additionally, the decrease in self-similarity and the increase in multifractality from rest to task were negatively correlated in regions involved in the task, suggesting a shift from structured global temporal dynamics in resting-state to locally bursty and non Gaussian scale-free structures during task.

COMPARISON WITH EXISTING METHOD(S): We showed that the wavelet leader based multifractal approach extends power spectrum estimation methods in the way of characterizing finely scale-free brain dynamics.

CONCLUSIONS

Altogether, our approach provides novel fine-grained characterizations of scale-free dynamics in human brain activity.

摘要

背景

宏观大脑活动的时间结构表现出振荡和无标度动力学。虽然神经振荡的功能相关性已经得到了广泛的研究,但无标度动力学在大脑处理中的本质和作用仍存在争议。

新方法

在这里,我们提供了一种新的方法,使用稳健的基于小波的自相似性和多重分形评估来严格丰富无标度大脑活动的特征。为此,我们分析了人类大脑活动,这些活动是在参与者休息或执行视觉运动辨别任务时使用脑磁图(MEG)记录的。

结果

首先,我们报告了在静息状态和任务数据中一致的亚慢波(0.1 到 1.5 Hz)无标度动力学(即自相似性和多重分形性)。其次,我们观察到了一种从前额到枕部的自相似性梯度,这让人联想到从感觉到更高阶皮层的已知时间尺度层次结构;在任务中,这种解剖学梯度比在休息时更为明显。第三,与休息相比,我们观察到任务时多重分形性显著增加。此外,在参与任务的区域中,从休息到任务的自相似性下降和多重分形性增加呈负相关,这表明从休息状态下的结构化全局时间动力学到任务期间的局部突发和非高斯无标度结构的转变。

与现有方法的比较

我们表明,基于小波领导者的多重分形方法在表征精细无标度大脑动力学方面扩展了功率谱估计方法。

结论

总之,我们的方法为人类大脑活动中的无标度动力学提供了新的细粒度特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验