文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米针状锶取代磷灰石涂层通过促进成骨和抑制破骨细胞生成来增强骨质疏松性骨整合。

Nano-needle strontium-substituted apatite coating enhances osteoporotic osseointegration through promoting osteogenesis and inhibiting osteoclastogenesis.

作者信息

Geng Zhen, Ji Luli, Li Zhaoyang, Wang Jing, He Hongyan, Cui Zhenduo, Yang Xianjin, Liu Changsheng

机构信息

Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.

Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.

出版信息

Bioact Mater. 2020 Oct 7;6(4):905-915. doi: 10.1016/j.bioactmat.2020.09.024. eCollection 2021 Apr.


DOI:10.1016/j.bioactmat.2020.09.024
PMID:33102935
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7553892/
Abstract

Implant loosening remains a major clinical challenge for osteoporotic patients. This is because osteoclastic bone resorption rate is higher than osteoblastic bone formation rate in the case of osteoporosis, which results in poor bone repair. Strontium (Sr) has been widely accepted as an anti-osteoporosis element. In this study, we fabricated a series of apatite and Sr-substituted apatite coatings via electrochemical deposition under different acidic conditions. The results showed that Ca and Sr exhibited different mineralization behaviors. The main mineralization products for Ca were CaHPO·2HO and Ca(PO) with the structure changed from porous to spherical as the pH values increased. The main mineralization products for Sr were SrHPO and Sr(PO)OH with the structure changed from flake to needle as the pH values increased. The experiment demonstrated that coatings fabricated at high pH condition with the presence of Sr were favorable to MSCs adhesion, spreading, proliferation, and osteogenic differentiation. In addition, Sr-substituted apatite coatings could evidently inhibit osteoclast differentiation and fusion. Moreover, the study indicated that nano-needle like Sr-substituted apatite coating could suppress osteoclastic activity, improve new bone formation, and enhance bone-implant integration. This study provided a new theoretical guidance for implant coating design and the fabricated Sr-substituted coating might have potential applications for osteoporotic patients.

摘要

种植体松动仍然是骨质疏松患者面临的一项重大临床挑战。这是因为在骨质疏松情况下,破骨细胞的骨吸收速率高于成骨细胞的骨形成速率,从而导致骨修复不佳。锶(Sr)已被广泛公认为一种抗骨质疏松元素。在本研究中,我们通过电化学沉积在不同酸性条件下制备了一系列磷灰石和锶取代的磷灰石涂层。结果表明,钙和锶表现出不同的矿化行为。钙的主要矿化产物是CaHPO·2H₂O和Ca₃(PO₄)₂,随着pH值升高,其结构从多孔变为球形。锶的主要矿化产物是SrHPO₄和Sr₃(PO₄)₂OH,随着pH值升高,其结构从片状变为针状。实验表明,在高pH条件下且存在锶时制备的涂层有利于间充质干细胞的黏附、铺展、增殖和成骨分化。此外,锶取代的磷灰石涂层能明显抑制破骨细胞的分化和融合。而且,该研究表明纳米针状锶取代的磷灰石涂层能抑制破骨细胞活性,促进新骨形成,并增强骨与种植体的整合。本研究为种植体涂层设计提供了新的理论指导,所制备的锶取代涂层可能对骨质疏松患者具有潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/c8549f7c8cec/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/4d65cee9ae3f/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/7d5027f5640c/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/3cbaab2eb738/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/72480d685b1c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/5ca0f68d66aa/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/200cdc5e30b0/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/95c9734e80dc/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/8fc767612bf2/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/c8549f7c8cec/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/4d65cee9ae3f/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/7d5027f5640c/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/3cbaab2eb738/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/72480d685b1c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/5ca0f68d66aa/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/200cdc5e30b0/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/95c9734e80dc/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/8fc767612bf2/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ad/7553892/c8549f7c8cec/gr8.jpg

相似文献

[1]
Nano-needle strontium-substituted apatite coating enhances osteoporotic osseointegration through promoting osteogenesis and inhibiting osteoclastogenesis.

Bioact Mater. 2020-10-7

[2]
Optimizing the strontium content to achieve an ideal osseointegration through balancing apatite-forming ability and osteogenic activity.

Biomater Adv. 2022-2

[3]
The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration.

Acta Biomater. 2017-8-12

[4]
A comparative study of strontium-substituted hydroxyapatite coating on implant's osseointegration for osteopenic rats.

Med Biol Eng Comput. 2016-12

[5]
Dual actions of osteoclastic-inhibition and osteogenic-stimulation through strontium-releasing bioactive nanoscale cement imply biomaterial-enabled osteoporosis therapy.

Biomaterials. 2021-9

[6]
Enhanced ectopic bone formation by strontium-substituted calcium phosphate ceramics through regulation of osteoclastogenesis and osteoblastogenesis.

Biomater Sci. 2022-10-11

[7]
Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces.

Acta Biomater. 2009-10-25

[8]
Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings.

Biomed Mater. 2016-8-10

[9]
[Improvement of osseointegration of titanium dental implant surfaces modified with strontium-substituted hydroxyapatite].

Zhonghua Kou Qiang Yi Xue Za Zhi. 2010-2

[10]
Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis.

J Biomed Mater Res B Appl Biomater. 2007-10

引用本文的文献

[1]
Sr-doped surfaces with 2D black phosphorus nanosheets for enhanced photothermal antibacterial activity and zirconia implant osseointegration.

Regen Biomater. 2025-4-26

[2]
Enhanced functionalities of biomaterials through metal ion surface modification.

Front Bioeng Biotechnol. 2025-4-14

[3]
Exploring the role of strontium-based nanoparticles in modulating bone regeneration and antimicrobial resistance: a public health perspective.

RSC Adv. 2025-4-7

[4]
Surface prereacted glass-ionomer particles incorporated into resin composites promote biocompatibility for restoration of subgingival dental defects.

Mater Today Bio. 2025-1-21

[5]
A phase-transited lysozyme coating doped with strontium on titanium surface for bone repairing via enhanced osteogenesis and immunomodulatory.

Front Cell Dev Biol. 2025-1-6

[6]
A sequential macrophage activation strategy for bone regeneration: A micro/nano strontium-releasing composite scaffold loaded with lipopolysaccharide.

Mater Today Bio. 2024-4-21

[7]
An Injectable silk-based hydrogel as a novel biomineralization seedbed for critical-sized bone defect regeneration.

Bioact Mater. 2024-2-8

[8]
Silicon and gadolinium co-doped hydroxyapatite/PLGA scaffolds with osteoinductive and MRI dual functions.

Front Bioeng Biotechnol. 2024-1-9

[9]
Very Large Pore Mesoporous Bioactive Silicate Glasses: Comparison of Behavior toward Classical Mesoporous Bioactive Glasses in Terms of Drug Loading/Release and Bioactivity.

Materials (Basel). 2024-1-11

[10]
Modification of titanium orthopedic implants with bioactive glass: a systematic review of and studies.

Front Bioeng Biotechnol. 2023-11-15

本文引用的文献

[1]
Strontium Ranelate Incorporated Enzyme-Cross-Linked Gelatin Nanoparticle/Silk Fibroin Aerogel for Osteogenesis in OVX-Induced Osteoporosis.

ACS Biomater Sci Eng. 2019-3-11

[2]
Apatite-binding nanoparticulate agonist of hedgehog signaling for bone repair.

Adv Funct Mater. 2020-3-17

[3]
Osteoblastic and anti-osteoclastic activities of strontium-substituted silicocarnotite ceramics: In vitro and studies.

Bioact Mater. 2020-4-6

[4]
Enhanced adhesion and differentiation of human mesenchymal stem cell inside apatite-mineralized/poly(dopamine)-coated poly(ε-caprolactone) scaffolds by stereolithography.

J Mater Chem B. 2016-10-14

[5]
Formation and osteoblast behavior of HA nano-rod/fiber patterned coatings on tantalum in porous and compact forms.

J Mater Chem B. 2015-7-21

[6]
Synthesis of Sr-morin complex and its in vitro response: decrease in osteoclast differentiation while sustaining osteoblast mineralization ability.

J Mater Chem B. 2019-1-11

[7]
Microenvironment construction of strontium-calcium-based biomaterials for bone tissue regeneration: the equilibrium effect of calcium to strontium.

J Mater Chem B. 2018-4-21

[8]
Strontium modulates osteogenic activity of bone cement composed of bioactive borosilicate glass particles by activating Wnt/β-catenin signaling pathway.

Bioact Mater. 2020-3-14

[9]
Substituted hydroxyapatite coatings of bone implants.

J Mater Chem B. 2020-3-4

[10]
Association of NLRP3 and CARD8 Inflammasome Polymorphisms With Aseptic Loosening After Primary Total Hip Arthroplasty.

J Orthop Res. 2019-9-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索