Suppr超能文献

基于 CRISPR-Cas9 的噬菌体基因组编辑。

CRISPR-Cas9 Based Bacteriophage Genome Editing.

机构信息

State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzho, People's Republic of China.

出版信息

Microbiol Spectr. 2022 Aug 31;10(4):e0082022. doi: 10.1128/spectrum.00820-22. Epub 2022 Jul 26.

Abstract

Bacteriophages are the most abundant entities in the biosphere, and many genomes of rare and novel bacteriophages have been sequenced to date. However, bacteriophage functional genomics has been limited by a lack of effective research methods. Clustered regularly interspaced short palindromic repeat/CRISPR-associated gene (CRISPR-Cas) systems provide bacteriophages with a new mechanism for attacking host bacteria as well as new tools for study bacteriophage functional genomics. It has been reported that bacteriophages are not only the driving elements of the evolution of prokaryote CRISPR arrays but also the targets of CRISPR-Cas systems. In this study, a phage genome editing platform based on the heterologous CRISPR-Cas9 system was theoretically designed, and a Vibrio natriegens phage TT4P2 genome editing experiment was carried out in the host bacterium Vibrio natriegens TT4 to achieve phage gene deletion and replacement. The construction of this phage genome editing platform is expected to solve the problem of insufficient research on phage gene diversity, promote the development of phage synthetic biology and nanotechnology, and even accelerate the discovery of new molecular biology tools. Bacteriophages are the most numerous organisms on earth and are known for their diverse lifestyles. Since the discovery of bacteriophages, our knowledge of the wider biological world has undergone immense and unforeseen changes. A variety of phages have been detected, but few have been well characterized. CRISPR was first documented in Escherichia coli in 1987. It has been reported that the CRISPR-Cas system can target and cleave invaders, including bacteriophages, in a sequence-specific manner. Here, we show that the construction of a phage genome editing platform based on the heterologous CRISPR-Cas9 system can achieve phage TT4P2 gene editing and can also improve the efficiency and accuracy of phage TT4P2 gene editing.

摘要

噬菌体是生物圈中最丰富的实体,迄今为止,已经测序了许多稀有和新型噬菌体的基因组。然而,噬菌体功能基因组学受到缺乏有效研究方法的限制。成簇规律间隔短回文重复/CRISPR 相关基因(CRISPR-Cas)系统为噬菌体提供了一种攻击宿主细菌的新机制,也为噬菌体功能基因组学的研究提供了新工具。据报道,噬菌体不仅是原核生物 CRISPR 阵列进化的驱动因素,也是 CRISPR-Cas 系统的靶标。在本研究中,理论上设计了一个基于异源 CRISPR-Cas9 系统的噬菌体基因组编辑平台,并在宿主菌耐盐威克汉姆菌 TT4 中进行了 Vibrio natriegens 噬菌体 TT4P2 基因组编辑实验,实现了噬菌体基因缺失和替换。该噬菌体基因组编辑平台的构建有望解决噬菌体基因多样性研究不足的问题,促进噬菌体合成生物学和纳米技术的发展,甚至加速新分子生物学工具的发现。噬菌体是地球上数量最多的生物,以其多样的生活方式而闻名。自噬菌体被发现以来,我们对更广泛的生物世界的认识发生了巨大的、意想不到的变化。已经检测到了多种噬菌体,但很少有得到很好的描述。CRISPR 于 1987 年在大肠杆菌中首次被记录。据报道,CRISPR-Cas 系统可以以序列特异性的方式靶向和切割入侵者,包括噬菌体。在这里,我们表明,基于异源 CRISPR-Cas9 系统构建噬菌体基因组编辑平台可以实现噬菌体 TT4P2 的基因编辑,并且还可以提高噬菌体 TT4P2 基因编辑的效率和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b7/9430736/1958e98e667f/spectrum.00820-22-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验